Защита воздуха от загрязнений. Как защитить воздух от загрязнений? Основные загрязнители атмосферы

Источники загрязнения многочисленны и разнообразны и по своей природе. Различают естественное и антропогенное загрязнение воздушной среды. Естественное загрязнение возникает, как правило, в результате природных процессов вне всякого влияния человека, а антропогенное - в результате деятельности людей.

Естественное загрязнение воздушной среды обусловлено поступлением в неё вулканического пепла, космической пыли (до 150-165 тыс. т. ежегодно), растительной пыльцы, морских солей и т.п. Основными источниками природной пыли являются пустыни, вулканы и оголенные участки земель.

К антропогенным источникам загрязнения атмосферного воздуха относятся энергетические установки, сжигающие ископаемое топливо, промышленные предприятия, транспорт, сельскохозяйственное производство. Из всего количества загрязняющих веществ, выброшенных в атмосферу, около 90% составляют газообразные вещества и около 10% - частицы, т.е. твердые или жидкие вещества.

Cуществуют три основных антропогенных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем, загрязнении воздуха сильно различается в зависимости от места.

В последнее десятилетие поступление загрязняющих веществ от отдельных отраслей производства и транспорта распределилось в порядке, приведенном в таблице :

Основные загрязняющие вещества

Загрязнение воздуха - результат выбросов загрязняющих веществ из различных источников. Причинно-следственные связи этого явления нужно искать в природе земной атмосферы. Так, загрязнения переносятся по воздуху от источников появления к местам их разрушающего воздействия; в атмосфере они могут претерпевать изменения, включая химические превращения одних загрязнений в другие, еще более опасные вещества.

Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн.т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км. от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.

д) Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители.

е) Соединения фтора. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты.

Последствия загрязнения

а) Парниковый эффект.

Климат Земли, который зависит главным образом от состояния ее атмосферы, на протяжении геологической истории периодически изменялся: чередовались эпохи значительного похолодания, когда большие территории покрывались ледниками, и эпохи потепления. Но в последнее время ученые метеорологи бьют тревогу: похоже на то, что атмосфера Земли разогревается значительно быстрее, чем когда-нибудь в прошлом. Это обусловлено деятельностью человека, которая, во-первых, разогревает атмосферу путем сжигания большого количества угля, нефти, газа, а также работы атомных электростанций. Во-вторых, и это главное, сжигание органического топлива, а также уничтожение лесов приводит к накоплению в атмосфере большого количества углекислого газа. За последние 120 лет содержание этого газа в воздухе увеличилось на 17%. В земной атмосфере углекислый газ действует как стекло в теплице или парнике: он свободно пропускает к поверхности Земли солнечные лучи, но удерживает тепло нагретой Солнцем поверхности Земли. Это вызывает разогревание атмосферы, известное как парниковый эффект. По подсчетам ученых, в ближайшие десятилетия среднегодовая температура на Земле за счет парникового эффекта может увеличиться на 1,5-2 С.

Проблема изменения климата в результате эмиссии парниковых газов должна рассматриваться как одна из самых важных современных проблем, связанных с долгосрочными воздействиями на окружающую среду, и рассматривать её нужно в совокупности с другими проблемами, вызванными антропогенными воздействиями на природу .

б) Кислотные дожди.

Окиси серы и азота, которые выбрасываются в атмосферу вследствие работы тепловых электростанций и автомобильных двигателей, соединяются с атмосферной влагой и образуют мелкие капельки серной и азотной кислот, которые переносятся ветрами в виде кислотного тумана и выпадают на землю кислотными дождями. Эти дожди крайне вредно действуют на окружающую среду:

снижается урожайность большинства сельскохозяйственных культур вследствие повреждения листвы кислотами;

вымывается из грунта кальций, калий, магний, который вызывает деградацию фауны и флоры;

гибнут леса;

отравляется вода озер и прудов, где гибнет рыба, исчезают насекомые;

исчезают водоплавающие птицы и животные, которые питаются насекомыми;

гибнут леса в горных районах, что вызывает селевые потоки;

ускоряется разрушение памятников архитектуры и жилищных зданий;

увеличивается количество заболеваний людей.

Фотохимический туман (смог) представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения.

Исследования ученых показывают, что смог возникает в результате сложных фотохимических реакций в воздухе, загрязненном углеводородами, пылью, сажей и окисями азота под влиянием солнечного света, повышенной температуры нижних слоев воздуха и большого количества озона. В сухом, загазованном и теплом воздухе возникает прозрачный синеватый туман, который неприятно пахнет, раздражает глаза, горло, вызывает удушье, бронхиальную астму, эмфизему легких. Листва на деревьях вянет, покрывается пятнами, желтеет.

Смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

г) Озоновая дыра в атмосфере.

На высоте 20-50 км воздух одержит повышенное количество озона. Озон образуется в стратосфере за счет молекул обычного, двухатомного кислорода О2, который поглощает жесткое УФ излучение. В последнее время ученые чрезвычайно обеспокоены снижением содержания озона в озоновом слое атмосферы. Над Антарктидой обнаружена «дыра» в этом слое, где содержание его меньше обычного Озоновая дыра обусловила усиление УФ-фона в странах, размещенных в Южном полушарии, прежде всего в Новой Зеландии. Медики этой страны бьют тревогу, констатируя значительное повышение количества заболеваний, обусловленных увеличенным Уф-фоном, таких, как рак кожи и катаракта глаз.

Защита воздушной среды

Защита воздушной среды включает комплекс технических и административных мер, прямо или косвенно направленных на прекращение или по крайней мере уменьшение возрастающего загрязнения атмосферы, являющегося следствием промышленного развития.

Территориально-технологические проблемы включают как вопросы местоположения источников загрязнения атмосферы, так и ограничения или устранения ряда отрицательных эффектов. Поиск оптимальных решений по ограничению загрязнения атмосферы данным источником интенсифицировался параллельно с ростом уровня технических знаний и промышленным развитием, - разработан ряд специальных мер по защите воздушной среды.

ЛЕКЦИЯ 14.

МЕРЫ И СРЕДСТВА ЗАЩИТЫ АТМОСФЕРНОГО ВОЗДУХА ОТ ЗАГРЯЗНЕНИЯ

План лекции:

    Основные способы защиты атмосферы от промышленных загрязнений.

    Очистка технологических и вентиляционных выбросов. Очистка отходящих газов от аэрозолей.

1. Основные способы защиты атмосферы от промышленных загрязнений.

Защита окружающей среды  это комплексная проблема, требующая усилий учёных и инженеров многих специальностей. Наиболее активной формой защиты окружающей среды является:

    Создание безотходных и малоотходных технологий;

    Совершенствование технологических процессов и разработка нового оборудования с меньшим уровнем выбросов примесей и отходов в окружающую среду;

    Экологическая экспертиза всех видов производств и промыш­ленной продукции;

    Замена токсичных отходов на нетоксичные;

    Замена неутилизируемых отходов на утилизированные;

    Широкое применение дополнительных методов и средств защиты окружающей среды.

В качестве дополнительных средств защиты окружающей среды применяют:

    аппараты и системы для очистки газовых выбросов от приме­сей;

    вынесение промышленных предприятий из крупных городов в малонаселённые районы с непригодными и малопригодными для сельско­го хозяйства землями;

    оптимальное расположение промышленных предприятий с учётом топографии местности и розы ветров;

    установление санитарно-защитных зон вокруг промышленных предприятий;

    рациональную планировку городской застройки обеспечивающую оптимальные условия для человека и растений;

    организацию движения транспорта с целью уменьшения выброса токсичных веществ в зонах жилой застройки;

    организацию контроля за качеством окружающей среды.

Площадки для строительства промышленных предприятий и жилых массивов должны выбираться с учётом аэроклиматической характерис­тики и рельефа местности.

Промышленный объект должен быть расположен на ровном возвы­шенном месте, хорошо продуваемом ветрами.

Площадка жилой застройки не должна быть выше площадки предп­риятия, в противном случае преимущество высоких труб для рассеива­ния промышленных выбросов практически сводится на нет.

Взаимное расположение предприятий и населённых пунктов опре­деляется по средней розе ветров тёплого периода года. Промышленные объекты, являющиеся источниками выбросов вредных веществ в атмос­феру, располагаются за чертой населённых пунктов и с подветренной стороны от жилых массивов.

Требованиями "Санитарных норм проектирования промышленных предприятий СН  245  71" предусмотрено, что объекты, являющиеся ис­точниками выделения вредных и неприятно пахнущих веществ, следует отделить от жилой застройки санитарно-защитными зонами. Размеры этих зон устанавливают в зависимости от:

    мощности предприятия;

    условий осуществления технологического процесса;

    характера и количества выделяемых в окружающую среду вред­ных и неприятно пахнущих веществ.

Установлено пять размеров санитарно-защитных зон: для предприятий I класса  1000м, II класса  500 м, III класса  300 м, IV класса  100м, V класса  50м.

Машиностроительные предприятия по степени воздействия на ок­ружающую среду в основном относятся к IV и V классам.

Санитарно-защитная зона может быть увеличена, но не более чем в три раза по решению Главного санитарно-эпидемиологического управления Минздрава России и Госстроя России при наличии небла­гоприятных аэрологических условий для рассеивания производственных выбросов в атмосфере или при отсутствии или недостаточной эффективности очистных сооружений.

Размеры санитарно-защитной зоны могут быть уменьшены при из­менении технологии, совершенствовании технологического процесса и внедрении высокоэффективных и надёжных очистных устройств.

Санитарно-защитную зону запрещается использовать для расши­рения промышленной площадки.

Разрешается размещать объекты более низкого класса вредноcти, чем основное производство, пожарное депо, гаражи, склады, ад­министративные здания, научно-исследовательские лаборатории, сто­янки транспорта и т.д.

Санитарно-защитная зона должна быть благоустроена и озелене­на газоустойчивыми породами деревьев и кустарников. Со стороны жи­лого массива ширина зелёных насаждений должна быть не менее 50 м, а при ширине зоны до 100 м  20 м.

2. Очистка технологических и вентиляционных выбросов. Очистка отходящих газов от аэрозолей.

Процесс очистки газов от твёрдых и капельных примесей в раз­личных аппаратах характеризуется несколькими параметрами, в том числе общей эффективностью очистки:

Если очистка ведётся в системе последовательно соединённых аппаратов, то эффективность очистки:

 = 1  (1   1)(1   2)…(1   n).

Э
ффективность фракционной очистки:

Д
ля оценки эффективности процесса используют коэффициент проскока К частиц через фильтр:

Удельная пылеёмкость пылеуловителя:

Количество пыли, которое удерживается им за период непрерыв­ной работы между двумя очередными регенерациями. Удельную пылеём­кость используют в расчётах продолжительности работы фильтра между регенерациями.

Эффективность пылеулавливания зависит от физико-химических свойств пылей и туманов:

    дисперсного состава;

    плотности;

    адгеэионных свойств;

    смачиваемости;

    электрической заряженности частиц;

    удельного сопротивления слоев частиц.

Для правильного выбора пылеулавливающего аппарата необходимы прежде всего сведения о дисперсном составе пылей и туманов.

По дисперсности пыли классифицированы на пять групп:

I  очень крупно-дисперсная пыль, d 50 > 140 мкм.

II  крупно-дисперсная пыль, d 50 = 40-140 мкм.

III  среднекрупная пыль, d 50 = 10-40 мкм.

IV  мелкодисперсная пыль, d 50 = 1-10 мкм.

V  очень мелкодисперсная пыль, d 50 < 1 мкм.

Адгезионные свойства  склонность частиц пыли к слипаемости. Чем мельче пыль, тем выше её слипаемость.

Смачиваемость частиц жидкостью (водой) влияет на работу мокрых пылеуловителей.

Очистка газов в сухих пылеуловителях.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитацион­ные, инерционные и центробежные.

Аппараты, использующие эти принципы, просты в изготовлении и эксплуатации, их достаточно широко используют в промышленности. Од­нако эффективность улавливания в них не всегда оказывается доста­точной, в связи с чем они часто выполняют роль аппаратов предвари­тельной очистки газов.

Циклоны . Циклонные аппараты наиболее распространены в промышленности.

Достоинства:

а) отсутствие движущихся частей в аппарате;

б) надёжность работы при t до 500°С;

в) возможность улавливания абразивных частиц при защите внутренних частей специальными покрытиями;

г) улавливание пыли в сухом виде;

д) успешная работа при высоких давлениях газа;

е) простота изготовления;

з) сохранение высокой эффективности очистки при увеличении запылённости газа.

Недостатки:

а) высокое гидравлическое сопротивление;

б) плохое улавливание частиц размером менее 5 мкм;

в) невозможность использовать для очистки газов от липких загрязнений.

Вихревые пылеуловители . Основным отличием вихревых пылеулови­телей от циклонов является наличие вспомогательного закручивающего газового потока. Отличительная особенность ВПУ  эффективность очистки газа от тончайших фракций (< 3-5 мкм).

Очистка газов в фильтрах.

Фильтры широко используют для тонкой очистки газовых выбро­сов от аэрозолей. В основе работы пористых фильтров всех видов ле­жит процесс фильтрации газа через пористую перегородку, в ходе ко­торого твёрдые частицы задерживаются, а газ проходит полностью че­рез неё. Фильтрующие перегородки весьма разнообразны по своей структуре и условно подразделяются на следующие типы:

    гибкие пористые перегородки  тканевые материалы из при­родных, синтетических или минеральных волокон; нетканые волокнис­тые материалы (войлоки, клееные и иглопробивные материалы, бумага, картон, волокнистые листы); ячеечные листы (губчатая резина, пено-полиуретан, мембранные фильтры);

    полужесткие пористые перегородки  слой волокон, стружка, вязаные сетки, расположенные на опорных устройствах или зажатые между ними;

    жесткие пористые перегородки  зернистые материалы (порис­тая керамика или пластмасса, спеченные или спрессованные порошки ме­таллов, пористые стекла, углеграфитовые материалы); металлические сетки и перфорированные листы.

В зависимости от назначения и величины входной и выходной концентрации фильтры делятся:

    Фильтры тонкой очистки  предназначены для улавливания с очень высокой эффективностью (>99) субмикронных частиц из про­мышленных газов (с С<1 мг/м 3) и скоростью фильтрования <100 м/с. Применяются для улавливания токсичных частиц. Эти фильтры не под­вергаются регенерации.

    Воздушные фильтры  используют в системах приточной венти­ляции и конденсирования воздуха. Работают при С<50 мг/м 3 , при V=2,5-3,0 м/с; они могут быть регенерируемыми или нерегенерируемы­ми.

    Промышленные фильтры (тканевые, зернистые, грубоволокнистые) применяются для очистки промышленных газов концентрацией до 60 г/м 3 . Фильтры регенерируются.

Тканевые фильтры . Эти фильтры имеют наибольшее распростране­ние. Возможности их использования расширяются в связи с созданием новых температуростойких и устойчивых к воздействию агрессивных газов тканей. Наибольшее распространение имеют рукавные фильтры.

Волокнистые фильтры тонкой очистки используются в атомной энергетике, радиоэлектронике, точном приборостроении, промышленной микробиологии и других отраслях. Фильтры позволяют очищать большие объёмы газов от твёрдых частиц всех размеров, включая субмикронные. Их широко используют для очистки радиоактивных аэрозолей. Для очистки на 99% (для частиц 0,05-0,5 мкм) применяют материалы в виде тонких листов или объёмных слоев из тонких или ультратонких волокон (d < 2 мкм). Скорость фильтрации 0,01-0,15 м/с.

В России широко применяют фильтрующие материалы типа ФП (фильтры Петрянова) из полимерных нитей. В качестве полимера ис­пользуют перхлорвинил (ФПП) и диацетатцеллюлозу (ФПА).

Двухступенчатые или комбинированные фильтры. В одном корпусе фильтры грубой очистки из слоя лавсановых нитей d = 100 мкм и фильтры тонкой очистки из материала ФП.

Зернистые фильтры. Различают насадочные и жёсткие зернистые фильтры.

Насадочные (насыпные) фильтры. В насыпных фильтрах в качес­тве насадки используется песок, галька, шлак, дроблёные горные по­роды, древесные опилки, кокс, крошка резины, пластмассы, графит. Фильтры имеют насадку с размером зерна 0,2-2 мм.

Зернистые жёсткие фильтры. В этих фильтрах зёрна прочно свя­заны друг с другом в результате спекания, прессования или склеива­ния и образуют прочную неподвижную систему. К ним относится порис­тая керамика, пористые металлы, пористые пластмассы. Эти фильтры используются для очистки сжатых газов.

Очистка газов в мокрых пылеуловителях.

Мокрые фильтры имеют ряд достоинств и недостатков перед дру­гими аппаратами.

Достоинства:

а) небольшая стоимость и более высокая эффективность улавли­вания взвешенных частиц;

б) возможность использования для очистки газов от частиц до 0,1 мкм;

в) возможность очистки газов при высокой температуре и по­вышенной влажности, а также при опасности возгорания и взрывов очищенных газов и уловленной пыли;

г) возможность наряду с пылями улавливать парообразные и га­зообразные компоненты.

Недостатки:

а) выделение уловленной пыли в виде шлама, что связано с не­обходимостью обработки сточных вод, что удорожает процесс;

б) возможность уноса капель жидкости и осаждения их с пылью в газоходах и дымососах;

в) в случае очистки агрессивных газов необходимость защищать аппаратуру и коммуникации антикоррозионными материалами.

В мокрых пылеуловителях в качестве орошающей жидкости чаще всего используют воду. В зависимости от поверхности контакта или по способу действия их подразделяют на 7 видов:

    полые газопромыватели;

    насадочные скрубберы;

    тарельчатые (барботажные, пенные) скрубберы;

    скрубберы с подвижной насадкой;

    газопромыватели ударно-инерционного действия;

    скрубберы центробежного действия;

    механические газопромыватели.

Полые газопромыватели. Они наиболее распространены. По нап­равлению движения газа и жидкости подразделяются на противоточные, прямоточные и с поперечным подводом жидкости. При работе без каплеуловителей V=0,6-l,2 м/с; с каплеуловителей  5-8 м/с. Обеспечи­вается высокая очистка для частиц пыли размером 10 мкм и малоэф­фективны при d ч <5 мкм.

Насадочные газопромыватели. Их используют для улавливания хорошо смачиваемой пыли, но при невысокой её концентрации. Из-за частой забивки такие промыватели используются мало. Расход жидкос­ти 0,15-0,5 л/м 3 газа, эффективность при улавливании частиц >2 мкм превышает 90 %.

Газопромыватели с подвижной насадкой . Они имеют большое распространение в пылеулавливании. В качестве насадки используют шары из полимерных материалов, стекла или пористой резины. Плотность шаров насадки не должна превышать плотности жидкости.

Для обеспечения высокой степени пылеулавливания рекоменду­ются следующие параметры процесса: W=5-6 м/с; удельное орошение  0,5-0,7 л/м 3 ; свободное сечение тарелки  0,4 м 2 /м 2 при ширине ще­ли 4-6 мм. Размер шаров 20-40 мм.

Скрубберы конической формы с подвижной шаровой насадкой. Два типа  форсуночный и эжекционный. В аппаратах применяются полиэти­леновые шары  35-40 мм с насыпной плотностью 110-120 кг/м 3 . Высота слоя шаров составляет 650 мм, W г.вх. = 6-10 м/с, W г.вых. = 1-2 м/с, H K = 1 м,  = 10-б0°, Q = от 3000 до 40000 м 3 /ч.

Тарельчатые газопромыватели (барботажные, пенные) . Наиболее распространены пенные аппараты с провальными тарелками или тарел­ками с переливом. Тарелки с переливом имеют отверстия  3-8 мм и свободное сечение 0,15-0,25 м 2 /м 2 .

Провальные тарелки могут быть дырчатыми, щелевыми, трубчаты­ми, колосниковыми. Дырчатые тарелки имеют отверстия  4-8 мм. Ши­рина щелей у других конструкций равна 4-5 мм. Свободное сечение 0,2-0,3 м 2 /м 2 . Пыль улавливается пенным слоем, который образуется при взаимодействии газа и жидкости. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли 0,95-0,96 при удельных расходах воды 0,4-0,5 л/м 3 .

Газопромыватели ударно-инерционного действия. В этих аппара­тах контакт газов с жидкостью осуществляется за счёт удара газово­го потока о поверхность жидкости. В результате такого взаимодейс­твия образуются капли  300-400 мкм. Скорость газа составляет 35-55 м/с, удельный расход жидкости 0,13 л/м 3 .

Газопромыватели центробежного действия. По конструктивному признаку их подразделяют на 2 вида:

    аппараты, в которых закрутка газового потока происходит при помощи центрального лопастного закручивающего устройства;

    аппараты с боковым тангенциальным подводом газа.

Большинство отечественных центробежных скрубберов имеют тан­генциальный подвод газов и плёночное орошение. Такие аппараты используют для очистки любых видов нецементирующей пыли.

Для очистки дымовых газов от золы применяют центробежный скруббер ЦС-ВТИ. Удельный расход воды составляет 0,09-0,18 л/м 3 .

Скоростные газопромыватели (скрубберы Вентури ) . Основной частью аппарата является труба-распылитель, в которой обеспечивается интенсивное дробление орошающей жидкости газовым потоком, движущимся со скоростью 40-150 м/с. Имеется каплеуловитель.

Эффективность очистки 0,96-0,98 для частиц со средним разме­ром 1-2 мкм при начальной концентрации пыли до 100 г/м 3 . Удельный расход воды 0,1-6,0 л/м 3 . Производительность по газу до 85000 м 3 /ч. Скруббера Вентури широко используются в системах очистки газов от туманов. Эффективность очистки воздуха от тумана со средним разме­ром частиц 0,3 мкм достигает 0,999, что вполне сравнивается с высокоэффективными фильтрами.

Туманоуловители . Для очистки воздуха от туманов кислот, ще­лочей, масел и других жидкостей используют волокнистые фильтры, принцип действия, которых основан на осаждении капель на поверх­ности пор с последующим отеканием жидкости под действием сил тя­жести.

Туманоуловители делят на низкоскоростные (W ф 0,15 м/с) и вы­сокоскоростные (W ф =2-2,5 м/с), где осаждение происходит под дейс­твием инерционных сил.

Волокнистые низкоскоростные туманоуловители обеспечивают вы­сокую эффективность (до 0,999) очистки газа от частиц размером менее 3 мкм и полностью улавливают частицы большего размера. Волокнистые слои формируются набивкой стекловолокна диаметром от 7 до 30 мкм или полимерных волокон (лавсан, полипропилен) диаметром от 12 до 40 мкм. Толщина слоя составляет 5-15 мм. Гидравлическое соп­ротивление сухих фильтроэлементов составляет 200-1000 Па.

Высокоскоростные туманоуловители имеют меньшие габаритные размеры и обеспечивают эффективность очистки, равную 0,9-0,98 при Р = 1500-2000 Па, от тумана с частицами менее 3 мкм. В качестве фильтрующей набивки используют войлоки из полипропиленовых воло­кон, которые успешно работают в среде разбавленных и концентриро­ванных кислот (H 2 SO 4 , HCl, HF, Н 3 PO 4 , НNО 3) и сильных щелочей.

Для очистки аспирационного воздуха ванн хромирования, содер­жащего туман и брызги хромовой и серной кислот, применяют волокни­стые фильтры типа ФВГ-Т. В корпусе размещена кассета с фильтрующим материалом  иглопробивным войлоком (ТУ 17-14-77-79), состоящим из волокон  70 мкм, толщиной слоя 4-5 мм. Гидравлическое сопротивле­ние 0,15-0,5 кПа, Q = 3500-80000 м 3 /ч, эффективность очистки 0,96-0,99, t90°C.

Очистка газов в электрофильтрах. В электрофильтрах очистка газов от пыли происходит под действием электрических сил.

Наиболее распространены электрофильтры с пластинчатыми и трубчатыми электродами. В пластинчатых электрофильтрах между осадительными пластинчатыми электродами натянуты проволочные коронирующие. В трубчатых электрофильтрах осадительные электроды предс­тавляют собой цилиндры (трубки), внутри которых по оси расположены коронирующие электроды.

Электрофильтры очищают большие объёмы газов от пыли с части­цами размером от 0,01 до 100 мкм при t=450 °С, P = 150 Па. Удельные затраты электроэнергии составляют 0,36-1,8 МДж на 1000 м 3 газа. Эффективность 0,999.

Очистка технологических и вентиляционных выбросов от газо- и парообразных загрязнителей

Процессы очистки и обезвреживания технологических и вентиля­ционных выбросов машиностроительных предприятий от газо- и парооб­разных примесей характеризуется тем, что, во-первых, газы, выбрасы­ваемые в атмосферу, весьма разнообразны по химическому составу; во-вторых, они подчас имеют высокую температуру и содержат большое количество пыли, что существенно затрудняет процесс газоочистки и требует предварительной подготовки отходящих газов; в-третьих кон­центрация газообразных и парообразных примесей чаще в вентиляцион­ных и реже в технологических выбросах обычно переменна и низка.

Создаваемые в промышленности газоочистные установки позволя­ют обезвреживать технологические и вентиляционные выбросы без или с последующей утилизацией уловленных примесей. Аппараты с выделе­нием продукта в концентрированном виде и дальнейшим его использо­ванием в производственном цикле наиболее перспективны. Производст­во таких установок  важнейший этап в разработке малоотходной и безотходной технологии.

Методы очистки промышленных выбросов от газообразных загрязнителей по характеру протекания физико-химических процессов делят на пять групп:

    физическая абсорбция;

    хемосорбция;

    поглощение газообразных примесей твёрдыми сорбентами (адсорбция);

    термическая нейтрализация отходящих газов;

    каталитическая очистка отходящих газов.

Метод абсорбции. В технике очистки газовых выбросов процесс абсорбции часто называют скрубберным процессом. Очистка газовых выбросов методом абсорбции заключается в разделении газовоздушной смеси на составные части путём поглощения одного или нескольких газовых компонентов (абсорбатов) этой смеси жидкими поглотителями (абсорбентами) с образованием растворов.

Движущей силой здесь является градиент концентрации на границе раздела фаз газ - жидкость. Растворённый в жидкости компонент газовоздушной смеси (абсорбат) благодаря диффузии проникает во вну­тренние слои абсорбента. Процесс очистки протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффи­циенты диффузии. Поэтому в процессе проектирования абсорберов осо­бое внимание следует уделять организации контакта газового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).

Решающим условием при выборе абсорбента является растворимость в нём извлекаемого компонента и её зависимость от температу­ры и давления.

В качестве абсорбента при физической абсорбции используют воду (для поглощения таких газов как NН 3 , НС1, НF и др.). В некото­рых специальных случаях в качестве абсорбента используют высококипящие органические растворители для улавливания ароматических уг­леводородов, которые плохо растворяются в воде.

Организация контакта газового потока абсорбентом осуществля­ется либо пропусканием газа через насадочную колонну, либо распы­лением жидкости, либо барботажем газа через слой абсорбента.

В зависимости от реализуемого способа контакта газ-жидкость различают:

а) насадочные колонны;

б) полые распыливающие колонны;

в) скрубберы Вентури;

г) барботажные тарельчатые колонны.

В качестве насадки используют геометрические тела различной формы, каждая из которых характеризуется собственной удельной по­верхностью и сопротивлением движению потока газа (кольца Рашига, сёдла Берля, кольца Палля, сёдла Инталокс). Материал: керамика, фарфор, пластмассы, металл.

Метод хемосорбции. Основан на поглощении газов и паров жид­кими поглотителями с образованием малолетучих или малорастворимых химических соединений. Поглотительная способность хемосорбента почти не зависит от давления, поэтому хемосорбция более выгодна при небольшой концентрации вредных примесей в отходящих газах. Большинство реакций, протекающих в процессе хемосорбции, являются экзотермическими и обратимыми, поэтому при повышении температуры раствора образующиеся химические соединения разлагаются с выделе­нием исходных элементов. На этом принципе основан механизм десорб­ции хемосорбента.

Примером хемосорбции может служить очистка газовоздушной смеси от сероводорода и диоксида углерода с применением мышьяково-щелочного, этаноламинового и других растворов.

Хемосорбция  один из распространенных способов очистки от­ходящих газов от окислов азота. Для очистки газов от окислов азо­та, выделяющихся из ванн травления, используется скруббер Вентури с форсуночным орошением газов раствором извести. Газы травильных ванн, содержащие оксиды азота, пары серной, соляной и плавиковой кислот, направляются в скруббер, где они контактируют с раствором извести и нейтрализуются. Эффективность очистки от оксидов азота 0,17-0,86 и от паров кислот  0,95.

Для очистки отходящих газов от оксида углерода используют медно-аммиачные растворы.

Метод адсорбции основан на физических свойствах некоторых твердых тел с развитой поверхностью пор селективно извлекать и концентрировать на своей поверхности отдельные компоненты из газо­вой смеси.

Адсорбция подразделяется на физическую и хемосорбцию. При физической адсорбции молекулы газа адсорбируются на поверхности твердого тела под действием межмолекулярных сил притяжения. Преи­мущество физической адсорбции  обратимость процесса.

В основе хемосорбции лежит химическое взаимодействие между адсорбентом и адсорбируемым веществом. Процесс хемосорбции как правило необратим.

В качестве адсорбентов или поглотителей применяют вещества, имеющие большую площадь поверхности на единицу массы. В качестве адсорбентов используют активированный уголь, а также простые и комплексные оксиды (активированный глинозем, силикагель, активиро­ванный оксид алюминия, синтетические цеолиты или молекулярные сита). Одним из основных параметров при выборе адсорбента является адсорбционная способность по извлекаемому компоненту.

Конструктивно аппараты для проведения процесса адсорбции (адсорбера) выполняются в виде вертикальных, горизонтальных, либо кольцевых емкостей, заполненных пористым адсорбентом, через кото­рый фильтруется поток очищаемого газа.

Адсорбцию широко используют при очистке газовых выбросов от паров органических растворителей для удаления ядовитых компонентов (сероводород) из газовых потоков, выбрасываемых в атмосферу, для удаления радиоактивных газов при эксплуатации ядерных реакторов, в частности, радиоактивного йода, и в других процессах очистки воз­ духа от вредных примесей.

Термическая нейтрализация. Метод основан на способности горючих токсичных компонентов (газы, пары и сильно пахнущие вещест­ва) окисляться до менее токсичных при наличии свободного кислорода и высокой температуры газовой смеси. Этот метод применяется в тех случаях, когда объемы выбросов велики, а концентрации загрязняющих веществ превышают 300 млн -1 .

Методы термической нейтрализации вредных примесей во многих случаях имеют преимущества перед абсорбцией и адсорбцией:

а) отсутствие шламового хозяйства;

б) небольшие габариты очистных установок;

Вы когда-нибудь задумывались о том, насколько важен в нашей жизни воздух?

Только представьте, что человеческая жизнь не может продолжаться без него более двух минут. Мы редко задумываемся над этим, воспринимая воздух как должное, тем не менее, существует реальная проблема - атмосфера Земли уже загрязнена довольно сильно. И пострадала она именно от рук человека. А это означает, что всё живое на планете находится в опасности, ведь мы постоянно вдыхаем в себя различные ядовитые вещества и примеси. Как защитить воздух от загрязнений?

Как люди и их деятельность влияют на состояние атмосферы?

Чем быстрее развивается современное общество, тем всё больше потребностей у него возникает. Людям нужно больше автомобилей, больше бытовой техники, много товаров для ежедневного использования, - этот список можно продолжить. Однако суть состоит в том, что для удовлетворения потребностей современных людей нужно постоянно что-то производить и строить.

Для этого стремительно вырубают леса, создают новые компании, открывают заводы и фабрики, которые ежедневно выбрасывают в атмосферу тонны химических отходов, копоти, газов, всевозможных вредных веществ. С каждым годом на дорогах появляются сотни тысяч новых автомобилей, каждый из которых вносит свою лепту в загрязнение атмосферы. Люди неразумно используют ресурсы, полезные ископаемые, иссушают реки, а все эти действия прямо или косвенно отражаются на состоянии атмосферы Земли.

Постепенно разрушающийся озоновый слой, призванный защищать всё живое от радиоактивного солнечного излучения, - свидетельство неразумной деятельности человека. Дальнейшее его истончение и разрушение приведёт к гибели как живых организмов, так и растительного мира. Как спасти планету от загрязнения атмосферы?

Каковы основные источники загрязнения атмосферного воздуха?

Современный автопром . В настоящее время на дорогах всех стран мира свыше 1 млрд автомобилей. В западных и европейских странах почти каждая семья имеет в своём распоряжении несколько автомобилей. Каждый из них - источник выхлопных газов, которые тоннами попадают в атмосферу. В Китае, Индии и России ситуация вроде бы пока не такая, но число автомобилей в СНГ по сравнением с 1991 годом, явно выросло в разы.

Фабрики и заводы . Конечно, без промышленности нельзя обойтись, однако не стоит забывать, что, получая необходимые нам товары, взамен мы расплачиваемся чистым воздухом. В скором времени человечеству нечем будет дышать, если фабрики и промышленные предприятия не научатся перерабатывать собственные отходы вместо того, чтобы выпускать их в атмосферу.

Продукты сгорания нефти и угля, потребляемых на теплоэлектростанциях, поднимаются в воздух, наполняя его очень вредными примесями. В дальнейшем токсические отходы выпадают вместе с осадками, питая химическими веществами почву. Из-за этого зелёные насаждения гибнут, а ведь они необходимы, чтобы поглощать углекислый газ и вырабатывать кислород. А как же мы без кислорода? Погибнем… Так что загрязнение воздуха и здоровье человека в прямой зависимости.
Меры по защите воздуха от загрязнения

Какие меры может предпринять человечество, чтобы прекратить загрязнять воздух на планете? Учёные уже давно знают ответ на этот вопрос, только на деле эти меры мало кто внедряет. Что же нужно делать?

1. Чиновники должны усилить контроль за организацией безопасной для природы и окружающей среды работы фабрик и промышленных предприятий. Нужно обязать владельцев всех заводов устанавливать очистные сооружения, чтобы свести к нулю вредные выбросы в атмосферу. За нарушение этих обязательств ввести наказание, возможно, в виде запрета на продолжение деятельности предприятий, которые продолжают загрязнять воздух.

2. Выпускать новые автомобили, которые работали бы только на экологически чистом топливе. Если прекратить производство машин, потребляющих в качестве топлива бензин и солярку, а заменить их электромобилями или машинами-гибридами, то у покупателей не останется выбора. Люди будут приобретать автомобили, не причиняющие вреда атмосфере. Со временем произойдёт полная замена старых авто на новые, экологически чистые, что принесёт огромную пользу нам самим, жителям планеты. Уже сейчас многие люди, живущие в странах европейского континента, делают выбор в пользу такого транспорта.

Число электромобилей в мире уже достигло 1.26 млн. По прогнозу Международной Энергетической Ассоциации, чтобы предупредить рост температуры из-за потепления более чем на 2 градуса, нужно увеличить численность электромобилей на дорогах до 150 млн к 2030 г. и 1 млрд к 2050 году при прочих имеющихся производственных показателях.

3. Экологи сходятся во мнении, что если прекратить работу устаревших теплоэлектростанций, ситуация стабилизируется. Однако вначале нужно найти и внедрить новые способы добычи энергетических ресурсов. Многие из них уже успешно используются. Люди научились превращать энергию солнца, воды и ветра в электричество. Альтернативные виды энергоресурсов не сопряжены с выделением опасных отходов во внешнюю среду, а значит, они помогут защитить воздух от загрязнения. В реальности же в Гонконге выработка более половины электроэнергии идет за счет теплоэлектростанций на угле, а потому доля выбросов углекислоты в последние годы выросла на 20%.

4. Чтобы экологическая ситуация стабилизировалась, нужно перестать уничтожать природные богатства - вырубать лесные массивы, осушать водоёмы и начать разумно использовать полезные ископаемые. Нужно постоянно увеличивать зелёные насаждения, чтобы они способствовали очищению воздуха и обогащению его кислородом.

5. Нужно повышать информированность населения. В частности информация о том как должна производиться защита воздуха от загрязнений для детей. Таким образом можно поменять подход множества людей к нынешнему состоянию ситуации.

Загрязнение воздуха порождает много новых проблем - увеличивается заболеваемость раком, сокращается продолжительность жизни людей, но это лишь верхушка айсберга. Настоящая беда в том, что испорченная экология грозит глобальным потеплением, а это приведёт к серьёзным природным катаклизмам в будущем. Уже сейчас протест нашей планеты против бездумной деятельности людей проявляется в виде наводнений, цунами, землетрясений и других природных явлений. Человечеству нужно всерьёз задуматься о том, чтобы защитить воздух от грязи.

Известно, что без пищи человек может прожить больше одного месяца, без воды - только несколько дней, а вот без воздуха - всего лишь пару минут. Так он необходим нашему организму! Поэтому вопрос о том, как защитить воздух от загрязнения, должен занимать первоочередное место среди проблем ученых, политиков, государственных деятелей и чиновников всех стран. Чтобы не убить себя, человечество должно принять срочные меры по предотвращению этого загрязнения. Заботиться о чистоте обязаны и граждане любой страны. Это только кажется, что от нас практически ничего не зависит. Есть надежда, что совместными усилиями все мы сможем защитить воздух от загрязнения, животных от - исчезновения, леса - от вырубки.

Атмосфера Земли

Земля - единственная из известных современной науке планет, на которой существует жизнь, что стало возможным благодаря атмосфере. Она и обеспечивает наше существование. Атмосфера - это в первую очередь воздух, который должен быть пригодным для дыхания людей и животных, не содержащим вредные примеси и вещества. Как защитить воздух от загрязнения? Это очень важный вопрос, который предстоит решить в ближайшем будущем.

Деятельность человека

В последние столетия мы нередко ведем себя крайне неразумно. Полезные ископаемые бездарно транжирятся. Леса вырубаются. Реки осушаются. В результате нарушается природный баланс, планета постепенно становится непригодной для жизни. То же происходит и с воздухом. Он постоянно загрязняется всяческими попадающими в атмосферу. Химические соединения, содержащиеся в аэрозолях и антифризах, разрушают Земли, грозя глобальным потеплением и катастрофами, связанными с этим. Как защитить воздух от загрязнения, чтобы жизнь на планете продолжалась?

Основные причины актуальной проблемы

  • Газообразные отходы заводов и фабрик, в бессчетном объеме выбрасываемые в атмосферу. Ранее это происходило вообще бесконтрольно. А на базе отходов предприятий, загрязнявших окружающую среду, можно было организовывать целые заводы по их переработке (как это делают сейчас, например, в Японии).
  • Автомобили. Сжигаемый бензин и дизельное топливо образуют которые улетучиваются в атмосферу, серьезно загрязняя ее. А если при этом учесть, что в некоторых странах на каждую среднестатистическую семью приходится по два-три авто, можно представить глобальность рассматриваемой проблемы.
  • Сжигание угля и нефти в теплоэлектростанциях. Электричество, конечно же, крайне необходимо для жизнедеятельности человека, но добывать его подобным способом - настоящее варварство. При сжигании топлива образуется множество вредных выбросов, сильно загрязняющих воздух. Все примеси поднимаются в воздух с дымом, концентрируются в тучах, проливаются на почву в виде От этого в значительной мере страдают деревья, которые предназначаются для очищения кислорода.

Как защитить воздух от загрязнения?

Меры по предотвращению сложившейся катастрофической ситуации давно разработаны учеными. Остается только следовать предписываемым правилам. Человечество уже получило серьезные предупреждения от самой природы. Особенно в последние годы окружающий мир буквально кричит людям о том, что потребительское отношение к планете необходимо изменить, иначе - смерть всего живого. Что нужно делать? Как защитить воздух от загрязнения (картинки нашей удивительной природы представлены ниже)?


По мнению специалистов-экологов, такие меры поспособствуют значительному улучшению сложившейся ситуации.

Приведенные в статье материалы могут быть использованы на уроке по теме «Как защитить воздух от загрязнения» (3 класс).

Вы когда-нибудь задумывались о том, насколько важен в нашей жизни воздух? Только представьте, что человеческая жизнь не может продолжаться без него более двух минут. Мы редко задумываемся над этим, воспринимая воздух как должное, тем не менее, существует реальная проблема – атмосфера Земли уже загрязнена довольно сильно. И пострадала она именно от рук человека. А это означает, что всё живое на планете находится в опасности, ведь мы постоянно вдыхаем в себя различные ядовитые вещества и примеси. Как защитить воздух от загрязнений?

Как люди и их деятельность влияют на состояние атмосферы?

Чем быстрее развивается современное общество, тем всё больше потребностей у него возникает. Людям нужно больше автомобилей, больше бытовой техники, много товаров для ежедневного использования, - этот список можно продолжить. Однако суть состоит в том, что для удовлетворения потребностей современных людей нужно постоянно что-то производить и строить.

Для этого стремительно вырубают леса, создают новые компании, открывают заводы и фабрики, которые ежедневно выбрасывают в атмосферу тонны химических отходов, копоти, газов, всевозможных вредных веществ. С каждым годом на дорогах появляются сотни тысяч новых автомобилей, каждый из которых вносит свою лепту в загрязнение атмосферы. Люди неразумно используют ресурсы, полезные ископаемые, иссушают реки, а все эти действия прямо или косвенно отражаются на состоянии атмосферы Земли.

Постепенно разрушающийся озоновый слой, призванный защищать всё живое от радиоактивного солнечного излучения, - свидетельство неразумной деятельности человека. Дальнейшее его истончение и разрушение приведёт к гибели как живых организмов, так и растительного мира. Как спасти планету от загрязнения атмосферы?

Каковы основные источники загрязнения атмосферного воздуха?

Современный автопром . В настоящее время на дорогах всех стран мира свыше 1 млрд автомобилей. В западных и европейских странах почти каждая семья имеет в своём распоряжении несколько автомобилей. Каждый из них – источник выхлопных газов, которые тоннами попадают в атмосферу. В Китае, Индии и России ситуация вроде бы пока не такая, но число автомобилей в СНГ по сравнением с 1991 годом, явно выросло в разы.

Фабрики и заводы . Конечно, без промышленности нельзя обойтись, однако не стоит забывать, что, получая необходимые нам товары, взамен мы расплачиваемся чистым воздухом. В скором времени человечеству нечем будет дышать, если фабрики и промышленные предприятия не научатся перерабатывать собственные отходы вместо того, чтобы выпускать их в атмосферу.

Продукты сгорания нефти и угля, потребляемых на теплоэлектростанциях, поднимаются в воздух, наполняя его очень вредными примесями. В дальнейшем токсические отходы выпадают вместе с осадками, питая химическими веществами почву. Из-за этого зелёные насаждения гибнут, а ведь они необходимы, чтобы поглощать углекислый газ и вырабатывать кислород. А как же мы без кислорода? Погибнем… Так что загрязнение воздуха и здоровье человека в прямой зависимости.

Меры по защите воздуха от загрязнения

Какие меры может предпринять человечество, чтобы прекратить загрязнять воздух на планете? Учёные уже давно знают ответ на этот вопрос, только на деле эти меры мало кто внедряет. Что же нужно делать?

1. Чиновники должны усилить контроль за организацией безопасной для природы и окружающей среды работы фабрик и промышленных предприятий. Нужно обязать владельцев всех заводов устанавливать очистные сооружения, чтобы свести к нулю вредные выбросы в атмосферу. За нарушение этих обязательств ввести наказание, возможно, в виде запрета на продолжение деятельности предприятий, которые продолжают загрязнять воздух.

2. Выпускать новые автомобили, которые работали бы только на экологически чистом топливе. Если прекратить производство машин, потребляющих в качестве топлива бензин и солярку, а заменить их электромобилями или машинами-гибридами, то у покупателей не останется выбора. Люди будут приобретать автомобили, не причиняющие вреда атмосфере. Со временем произойдёт полная замена старых авто на новые, экологически чистые, что принесёт огромную пользу нам самим, жителям планеты. Уже сейчас многие люди, живущие в странах европейского континента, делают выбор в пользу такого транспорта.

Число электромобилей в мире уже достигло 1.26 млн. По прогнозу Международной Энергетической Ассоциации, чтобы предупредить рост температуры из-за потепления более чем на 2 градуса, нужно увеличить численность электромобилей на дорогах до 150 млн к 2030 г. и 1 млрд к 2050 году при прочих имеющихся производственных показателях.

3. Экологи сходятся во мнении, что если прекратить работу устаревших теплоэлектростанций, ситуация стабилизируется. Однако вначале нужно найти и внедрить новые способы добычи энергетических ресурсов. Многие из них уже успешно используются. Люди научились превращать энергию солнца, воды и ветра в электричество. Альтернативные виды энергоресурсов не сопряжены с выделением опасных отходов во внешнюю среду, а значит, они помогут защитить воздух от загрязнения. В реальности же в Гонконге выработка более половины электроэнергии идет за счет теплоэлектростанций на угле, а потому доля выбросов углекислоты в последние годы выросла на 20%.

4. Чтобы экологическая ситуация стабилизировалась, нужно перестать уничтожать природные богатства – вырубать лесные массивы, осушать водоёмы и начать разумно использовать полезные ископаемые. Нужно постоянно увеличивать зелёные насаждения, чтобы они способствовали очищению воздуха и обогащению его кислородом.

5. Нужно повышать информированность населения. В частности информация о том как должна производиться защита воздуха от загрязнений для детей. Таким образом можно поменять подход множества людей к нынешнему состоянию ситуации.

Загрязнение воздуха порождает много новых проблем – увеличивается заболеваемость раком, сокращается продолжительность жизни людей, но это лишь верхушка айсберга. Настоящая беда в том, что испорченная экология грозит глобальным потеплением, а это приведёт к серьёзным природным катаклизмам в будущем. Уже сейчас протест нашей планеты против бездумной деятельности людей проявляется в виде наводнений, цунами, землетрясений и других природных явлений. Человечеству нужно всерьёз задуматься о том, чтобы защитить воздух от грязи.

Кстати !

На сегодняшней встрече в Руанде, как передает агентство Рейтер, делегаты почти 200 стран договорились снизить применение парниковых газов (гидрофторуглеродовых газов), используемых в холодильном оборудовании и кондиционерах. Гидрофторуглеродовые газы в разы сильнее разрушают озоновый слой Земли чем двуокись углерода (в 10 тыс раз).
О подписании соглашения по результатам встречи журналистам доложил министр природных ресурсов Руанды.

Развитые страны ЕС и США обязались снизить применение гидрофторуглеродовых газов на 10% до начала 2019 года, то есть за 2 ближайших года.
Индия, Китай и Пакистан обязались не наращивать использование гидрофторуглеродовых газов до 2028 года, а после этой даты сократить их использование. Причем Китай – до 2024 года.

Напомню, еще что 4 ноября 2016 года в силу вступит Парижское соглашение по климату (от декабря 2015 года), которое постепенно заменяет Киотский протокол, действующий до 2020 года. Россия подписала парижское соглашение по климату.

Похожие публикации