Виды сервоприводов. Сервопривод - электропривод с обратной связью

Сервоприводы и механизмы оснащены датчиком, который отслеживает определенный параметр, например усилие, положение или скорость, а также управляющий блок в виде электронного устройства. Задачей этого устройства является поддержание необходимых параметров в автоматическом режиме во время функционирования устройства, в зависимости от вида поступающего сигнала от датчика в определенные периоды времени.

Устройство и работа

От обычного электродвигателя сервопривод отличается тем, что можно задать точное положение вала в градусах. Сервоприводы – это любые механические приводы, которые включают в себя датчик некоторого параметра и блок управления, который способен автоматически поддерживать требуемые параметры, соответствующие определенным внешним значениям.

1 — Шестерни редуктора
2 — Выходной вал
3 — Подшипник
4 — Нижняя втулка
5 — Потенциометр
6 — Плата управления
7 — Винт корпуса
8 — Электродвигатель постоянного тока
9 — Шестерня электродвигателя

Для преобразования электрической энергии в механическое движение, необходим . Приводом является редуктор с электродвигателем. Редуктор требуется для снижения скорости двигателя, так как скорость слишком большая для применения. Редуктор состоит из корпуса, в котором расположены валы с шестернями, способными преобразовывать и передавать крутящий момент.

Путем запуска и останова электродвигателя можно приводить в движение выходной вал редуктора, который связан с шестерней сервопривода. К валу можно присоединять устройство или механизм, которым требуется управлять. Кроме этого для контроля положения вала требуется наличие датчика обратной связи. Этот датчик может преобразовать угол поворота снова в сигнал электрического тока.

Такой датчик получил название энкодера. В качестве энкодера может применяться потенциометр. Если бегунок потенциометра поворачивать, то будет изменяться его сопротивление. Значение этого сопротивления прямо пропорционально зависит от угла поворота потенциометра. Таким образом, есть возможность добиться установки определенного положения механизма.

Кроме выше названного потенциометра, редуктора и электродвигателя, сервоприводы оснащены электронной платой, которая обрабатывает поступающий сигнал внешнего значения параметра от потенциометра, сравнивает, и в соответствии с результатом сравнения запускает или останавливает электродвигатель. Другими словами эта электронная начинка отвечает за поддержку отрицательной обратной связи.

Подключение сервопривода осуществляется тремя проводниками, два из которых подают питание напряжением электродвигателя, а по третьему проводнику поступает сигнал управления, с помощью которого выполняется установка положения вала двигателя.

Кроме электродвигателя, играть роль привода может и другой механизм, например пневматический цилиндр со штоком. В качестве датчика обратной связи применяют также датчики поворота угла, либо . Управляющий блок является сервоусилителем, индивидуальным инвертором. Он может содержать также и датчик сигнала управления.

При необходимости создания плавного торможения или разгона для предотвращения чрезмерных динамических нагрузок двигателя, выполняют схемы более сложных микроконтроллеров управления, которые могут контролировать позицию рабочего элемента намного точнее. Подобным образом выполнено устройство привода установки позиции головок в компьютерных жестких дисках.

Виды сервоприводов

При необходимости создания управления несколькими группами сервоприводов используют контроллеры с ЧПУ, которые собраны на схемах программируемых логических контроллеров. Такие сервоприводы способны обеспечить крутящий момент 50 Н*м, мощностью до 15 киловатт.

Синхронные способны задать скорость вращения электродвигателя с большой точностью, так же как ускорение и угол поворота. Синхронные виды приводов могут быстро достигать номинальной скорости вращения.

Асинхронные способны точно выдерживать скорость даже на очень низких оборотах.

Сервоприводы принципиально разделяют на электромеханические и электрогидромеханические . Электромеханические приводы состоят из редуктора и электродвигателя. Но их быстродействие оказывается намного меньше. В электрогидромеханических приводах движение создается путем движения поршня в цилиндре, вследствие чего быстродействие оказывается на очень высоком уровне.

Характеристики сервоприводов

Рассмотрим основные параметры, которые характеризуют сервоприводы:

  • Усилие на валу . Этот параметр является крутящим моментом. Это наиболее важный параметр сервопривода. В паспортных данных чаще всего указывается несколько значений момента для разных величин напряжения.
  • Скорость поворота также является важной характеристикой. Она указывается в эквиваленте времени, необходимом для изменения позиции выходного вала привода на 60 градусов. Этот параметр также могут указывать для нескольких значений напряжения.
  • Тип сервоприводов бывает аналоговый или цифровой.
  • Питание . Основная часть сервоприводов функционирует на напряжении 4,8-7,2 вольта. Питание подается чаще всего по трем проводникам: белый – сигнал управления, красный – напряжение работы, черный – общий провод.
  • Угол поворота – это наибольший угол, на который выходной вал способен повернуться. Чаще всего этот параметр равен 180 или 360 градусов.
  • Постоянного вращения . При необходимости обычный сервопривод можно модернизировать для постоянного вращения.
  • Материал изготовления редуктора сервоприводов бывает различным: карбон, металл, пластик, либо комбинированный состав. Шестерни, выполненные из пластика, не выдерживают ударных нагрузок, однако обладают высокой износостойкостью. Карбоновые шестерни намного прочнее пластмассовых, но имеют высокую стоимость. Шестерни из металла способны выдержать значительные нагрузки, падения, но имеют низкую износостойкость. Выходной вал редуктора устанавливают по-разному на разных моделях: на втулках скольжения, либо на шариковых подшипниках.


Преимущества
  • Легкость и простота установки конструкции.
  • Безотказность и надежность, что важно для ответственных устройств.
  • Не создают шума при эксплуатации.
  • Точность и плавность передвижений достигается даже на малых скоростях. В зависимости от поставленной задачи разрешающая способность может настраиваться работником.
Недостатки
  • Сложность в настройке.
  • Повышенная стоимость.

Применение

Сервоприводы в настоящее время используются достаточно широко. Так, например, они применяются в различных точных приборах, промышленных роботах, автоматах по производству печатных плат, станках с программным управлением, различные клапаны и задвижки.

Наиболее популярными стали быстродействующие приводы в авиамодельном деле. Серводвигатели имеют достоинство в эффективности расхода электрической энергии, а также равномерного движения.

В начале появления серводвигателей использовались коллекторные трехполюсные моторы с обмотками на роторе, и с постоянными магнитами на статоре. Кроме этого, в конструкции двигателя был узел с коллектором и щетками. Далее, по мере технического прогресса число обмоток двигателя увеличилось до пяти, а момент вращения возрос, так же как и скорость разгона.

Следующим этапом развития серводвигателей было расположение обмоток снаружи магнитов. Этим снизили массу ротора, уменьшили время разгона. При этом стоимость двигателя увеличилась. В результате дальнейшего проектирования серводвигателей было решено отказаться от наличия коллектора в устройстве двигателя. Стали применяться двигатели с постоянными магнитами ротора. Мотор стал без щеток, эффективность его возросла вследствие увеличения крутящего момента, скорости и ускорения.

В последнее время наиболее популярными стали сервомоторы, работающие от программируемого контроллера (Ардуино). Вследствие этого открылись большие возможности для проектирования точных станков, роботостроения, авиастроения (квадрокоптеры).

Так как приводы с моторами без коллекторов обладают высокими функциональными характеристиками, точным управлением, повышенной эффективностью, они часто применяются в промышленном оборудовании, бытовой технике (мощные пылесосы с фильтрами), и даже в детских игрушках.

Сервопривод отопления

По сравнению с механической регулировкой системы отопления, электрические сервоприводы являются наиболее совершенными и прогрессивными техническими устройствами, обеспечивающими поддержание параметров отопления помещений.


1 — Блок питания
2 — Комнатные термостаты
3 — Коммутационный блок
4 — Серводвигатели
5 — Подающий коллектор
6 — Обход
7 — Водяной теплый пол
8 — Обратный коллектор
9 — Датчик температуры воды
10 — Циркулярный насос
11 — Шаровый клапан
12 — Регулировочный клапан
13 — Двухходовой термостатический клапан

Привод системы отопления функционирует совместно с термостатом, установленным на стену. Кран с электрическим приводом монтируется на трубе подачи теплоносителя, перед коллектором теплого водяного пола. Далее выполняется подключение питания 220 вольт и настройка терморегулятора рабочего режима.

Система управления оснащается двумя датчиками. Один из них расположен в полу, другой в помещении. Датчики передают сигналы на термостат, управляющий сервоприводом, который соединен с краном. Повысить точность регулировки можно путем установки дополнительного прибора снаружи помещения, так как условия климата непрерывно изменяются, и оказывают влияние на температуру в комнате.

Привод механически соединен с клапаном для его управления. Клапаны могут быть двух- и трехходовыми. Двухходовой клапан может изменять температуру воды в системе. Трехходовой клапан способен поддерживать температуру неизменной, однако изменяет потребление горячей воды, которая подается в контуры. В устройстве трехходового клапана имеется два входа для горячей воды (трубы подачи) и выход обратной воды, через который подается смешанная вода с заданной температурой.

Смешивание воды происходит с помощью клапана. При этом осуществляется регулировка подачи теплоносителя в коллекторы. При открывании одного входа, другой начинает закрываться, а расход воды на выходе не изменяется.

Сервоприводы багажника

В настоящее время современные автомобили чаще всего стали производит с функцией автоматического открывания багажника. Для такой цели применяют рассмотренную нами конструкцию сервопривода. Автопроизводители используют два метода для оснащения такой функцией автомобиля.

Конечно, пневмопривод багажника более надежен, однако его стоимость достаточно высока, поэтому в автомобилях такой привод не нашел применения.

Электрический привод выполняется с разными способами управления:

  • Рукояткой на крышке багажника.
  • Кнопкой на панели двери водителя.
  • С пульта сигнализации.

Открывать багажник вручную не всегда бывает удобным. Например, зимой замок имеет свойство замерзать. Сервопривод дополнительно выполняет функцию защиты автомобиля от чужого проникновения, так как совмещен с устройством замка.

Такие приводы багажника используются на некоторых импортных автомобилях, однако, можно установить такой механизм и на отечественных машинах, было бы желание.

Существуют приводы багажника с магнитными пластинами, однако они не нашли применения, так как их устройство достаточно сложное.

Наиболее приемлемыми по цене являются сервоприводы багажника, которые выполняют только открывание. Функция закрывания для них недоступна. Также можно выбрать конструкцию модели привода, имеющего инерционный механизм. Он играет роль блокировки при появлении препятствия при движении багажника.

Дорогостоящие модели сервоприводов включают в себя механизм подъема и опускания багажника, доводчика механизма запирания, датчиков и контроллера. Обычно их на автомобилях устанавливают на заводе, однако простые конструкции вполне можно монтировать самостоятельно.

Серводвигатели обладают следующими характеристиками:

Высокая динамика,

Высокая точность позиционирования,

Высокая перегрузочная способность в широком диапазоне частоты вращения.

Кроме того, серводвигатели имеют следующие особенности:

Высокая точность поддержания заданной частоты вращения;

Широкий диапазон регулирования частоты вращения;

Малое время разгона;

Малое время регулирования вращающего момента;

Большой пусковой момент;

Малый момент инерции;

Малая масса;

Компактная конструкция.

Рис. 1 Пример серводвигателей

Основными элементами конструкции серводвигателя являются:

Элементы для подключения в виде штекерных разъемов или клеммной коробки;

Датчик обратной связи.

1. Обзор современных серводвигателей

Семейство серводвигателей можно разделить на следующие группы:


Рис. 2 Обзор серводвигателей

Важнейшие отличительные особенности обусловлены следующими факторами:

Конструкция двигателей (статор, ротор);

Необходимые системы регулирования;

Система обратной связи (датчики).

До недавних лет в качестве сервоприводов применялись бесщеточные двигатели постоянного тока с возбуждением от постоянных магнитов. Управление обеспечивали тиристорные или транзисторные преобразователи-регуляторы.

Благодаря техническому прогрессу в области силовых полупроводниковых приборов и микроконтроллеров в девяностых годах существенно выросло применение синхронных серводвигателей.

Сегодня синхронные серводвигатели переменного тока с возбуждением от постоянных магнитов занимают больший сегмент рынка, чем асинхронные серводвигатели. Это обусловлено характеристиками двигателей.

В данной статье для обозначения двигателей используются следующие термины:

Синхронный серводвигатель - синхронный серводвигатель переменного тока с возбуждением от постоянных магнитов.

Асинхронный серводвигатель - асинхронный двигатель с датчиком обратной связи, специально спроектированным для работы от преобразователя частоты.

Синхронный линейный двигатель - линейный синхронный серводвигатель переменного тока с возбуждением от постоянных магнитов.

2. Характеристики синхронных и асинхронных серводвигателей

Характеристики синхронных серводвигателей

Характеристики асинхронных серводвигателей

Высокая динамика.

Средняя... высокая динамика.

Умеренно хорошие характеристики регулирования при больших моментах инерции нагрузки.

Хорошие характеристики регулирования при больших моментах инерции нагрузки.

Высокая перегрузочная способность до 6 Мн (номинального момента, зависит от типа двигателя).

Высокая перегрузочная способность (почти 3-кратная).

Высокая допустимая тепловая нагрузка в длительном режиме по всему диапазону частоты вращения.

Высокая допустимая тепловая нагрузка в длительном режиме в зависимости от частоты вращения.

Охлаждение посредством конвекции, теплоотвода и теплового излучения.

Охлаждение крыльчаткой на валу или принудительное.

Высокое качество регулирования частоты вращения.

Возможность длительной работы с пусковым моментом на низких скоростях.

Из-за высокой тепловой нагрузки невозможна длительная работа в нижнем диапазоне частоты вращения без вентилятора принудительного охлаждения.

Широкий диапазон регулирования частоты вращения, 1:5000 и более (зависит от преобразователя).

Пульсация вращающего момента (Cogging) на низкой частоте вращения.

Практически полное отсутствие пульсации вращающего момента (Cogging).


3. Устройство синхронных серводвигателей

Основными элементами конструкции синхронного серводвигателя являются:

Ротор с постоянными магнитами;

Статор с соответствующей обмоткой;

Элементы для подключения в виде штекерного разъема или клеммной коробки;

Датчик обратной связи.

Различают следующие варианты синхронных серводвигателей:

Исполнение с корпусом - корпусные двигатели;

Исполнение без корпуса - бескорпусные двигатели.

Исполнение без корпуса означает, что роль корпуса двигателя выполняет пакет пластин статора. Это позволяет полностью использовать весь профиль пакета стальных пластин.

Исполнение с корпусом: двигатель CMP;

Исполнение с корпусом: двигатель CM/DS;

Исполнение без корпуса: двигатель CMD. 

3.1 Устройство двигателя CMP

Серводвигатели CMP отличаются очень высокой динамикой, низким моментом инерции ротора, компактностью и высокой удельной мощностью.

Серводвигатели CMP - это двигатели с корпусом.


Рис. 3. Устройство синхронного серводвигателя CMP компании SEW-EURODRIVE

1 - Компенсационная шайба

2 - Радиальный шарикоподшипник

4 - Радиальный шарикоподшипник

5 - Сигнальный штекерный разъем SM / SB

6 - Силовой штекерный разъем SM / SB

7 - Крышка корпуса

8 - Прокладка

9 - Резольвер

10 - Задний подшипниковый щит

11 - Корпус со статором

13 - Манжета

Характеристики и опции двигателя CMP

Перегрузочная способность до 4,5*Мн (номинального момента).

Статор с зубцовой обмоткой.

Изменяемое расположение штекерных разъемов.

3.2 Устройство двигателя CM/DS

Серводвигатели CM/DS отличаются широким диапазоном вращающего момента, хорошими характеристиками регулирования при больших моментах инерции нагрузки, применением мощного рабочего тормоза и разнообразием опций.

Серводвигатели CM/DS - это двигатели с корпусом.


Рис. 4. Устройство синхронного серводвигателя CM компании SEW-EURODRIVE

2 - Подшипниковый щит с фланцем

4 - Корпус со статором

5 - Задний подшипниковый щит

7 - Резольвер

8 - Корпус штекерного разъема

9 - Штекер силового кабеля, в сборе

10 - Штекер сигнального кабеля, в сборе

11 - Тормоз, в сборе

Характеристики и опции двигателя CM/DS

Перегрузочная способность до 4*Мн (номинального момента).

Статор с шаблонной обмоткой.

Возможность монтажа на стандартные редукторы и редукторы для сервопривода через адаптор.

Возможность прямого монтажа на редуктор.

Возможность установки резольвера или датчика абсолютного отсчета с высокой разрешающей способностью.

Штекерный разъем или клеммная коробка.

Вентилятор принудительного охлаждения (опция).

Рабочий тормоз (опция).

Датчик TF или KTY для тепловой защиты двигателя. 2-й вал со стороны датчика (опция).

Усиленные подшипники (опция).

3.3 Устройство двигателя CMD

Серводвигатели CMD отличаются особой компактностью, оптимальным выбором частоты вращения и набором опций для установок с прямым (безредукторным) приводом.

Серводвигатели CMD - это двигатели без корпуса.


Рис. 5. Устройство синхронного серводвигателя CMD компании SEW-EURODRIVE

2 - Подшипниковый щит с фланцем

3 - Радиальный шарикоподшипник

4 - Статор

5 - Задний подшипниковый щит

6 - Радиальный шарикоподшипник

7 - Резольвер

8 - Разъем сигнального кабеля

9 - Разъем силового кабеля

Характеристики и опции двигателя CMD

Почти 6-кратная перегрузочная способность.

Статор с шаблонной обмоткой.

Тормоз с катушкой 24 В (опция).

Возможность установки резольвера или датчика абсолютного отсчета с высокой разрешающей способностью.

Датчик KTY для тепловой защиты двигателя.

3.4 Конструкция ротора

Ротор синхронных серводвигателей оснащен постоянными магнитами.

Рис. 6.

1 - Наклеенные магниты

Эти магниты, как правило, изготавливаются из спеченного редкоземельного материала неодим-железо-бор. Магнитные свойства этого материала значительно превосходят свойства обычных ферритовых магнитов. Это позволяет сделать конструкцию более компактной при равной выходной мощности.

5 сентября 2011 в 17:28

Обратная связь от сервопривода или «забиваем гвозди»

  • Блог компании Амперка

Всем хабраконструкторам, привет!

Пришла мне как-то в голову дурацкая мысль: собрать девайс, который бы молотком забивал гвозди. Просто ради демонстрации работы сервопривода. Алгоритм простой: даём команду на поднятие молотка, ждём пока он поднимется, отпускаем молоток; и так пока гвоздь не будет забит. Но как узнать, что молоток поднялся и что гвоздь забит, не пользуясь дополнительными датчиками? Спросить у «глупого» сервопривода! Как именно это сделать - об этом и пойдёт речь в статье.

Что такое сервопривод? Наверное, все знают, но на всякий случай: это привод, который в отличие от мотора постоянного тока не просто крутится пока подаётся напряжение, а стремится повернуться к заданному углу и удержаться в этом положении. Угол устанавливается с помощью ШИМ (PWM) -сигнала. Сервопривод стремится к определённому положению, а следовательно должен знать своё собственное. Перед началом сборки я был уверен, что запросить текущий угол будет проще простого и это возможно «из коробки». Не тут то было. Но обо всём по порядку.

Итак, предполагаемый девайс: сервопривод с прикреплённым к нему молотком на небольшом постаменте для равновесия. Сервопривод подключается к Arduino через IO Shield, а микроконтроллер исполняет алгоритм:

  • Установить сервоприводу определённый угол для поднятия молотка
  • Бездействовать пока сервопривод не сообщит, что угол достигнут
  • Отключить питание сервопривода, чтобы молоток упал на гвоздь
  • Прочитать угол в упавшем положении
  • Если угол после падения несколько раз подряд не изменился - значит гвоздь перестал вколачиваться. Предположительно он забит - прекращаем исполнение
  • Если угол изменился, начинаем сначала
Берём исходные части:

Пилим и скручиваем:

Приступаем к написанию прошивки для Arduino… Довольно быстро становится понятно, что установить определённый угол для сервы - не проблема. В частности, это позволяет сделать стандартная библиотека Servo, которая из заданного в градусах угла формирует соответствующий PWM-сигнал. А вот с чтением - проблема: функции для этого нет.

Быстро погуглив проблему, нашёл кучу сообщений на форумах, где на этот вопрос авторитетно отвечали: «Это не возможно! Сервоприводы - это write-only устройства». Меня это привело в замешательство, я интуитивно чувствовал, что достать эти данные как-то просто можно.

Матчасть
После недолгих поисков в сети можно понять как устроена серва. Это обычный мотор постоянного тока, который соединён с выведенным шпинделем через несколько шестерней, формирующих пониженную передачу. Этот же шпиндель с внутренней стороны физически прикреплён к потенциометру (подстроечному резистору). При вращении мотора шпиндель поворачивается, поворачивается и бегунок потенциометра, выходное напряжение потенциометра меняется, мозги сервы его считывают и если напряжение достигло заданного уровня - цель достигнута, мотор отключается от питания.

То есть, у нас есть потенциометр, по сигналу с которого можно определить текущий угол. Осталось только разобрать сервопривод и подключиться в нужном месте. Разбираем:

Сразу скажу, что сервопривод с фотографии я безвозвратно сломал в процессе разборки. Не нужно было вообще выламывать плату с электроникой, достаточно просто снять заднюю крышку, которая держится на 4-х винтах. Но сразу это было не очевидно, и чтобы понять куда на плате припаян потенциометр, пришлось пожертвовать одним приводом.

Вот как припаян потенциометр на сервоприводах от DFRobot :

Нам нужен сигнал с бегунка, который меняется в зависимости от угла поворота от минимального до максимального напряжения. Берём мультиметр, вращаем шпиндель и смотрим: каким углам какой сигнал соответствует. Для моей сервы углу в 0° соответствует напряжение 0.43 В, а максимальному углу поворота в 180° соответствует напряжение 2.56 В.

Аккуратно припаиваем новый сигнальный провод.

Подключаем его к аналоговому входу A5 на Arduino. Закрываем крышку. Пишем программу:

#include // разрешене аналогого порта #define A_MAX 1024 // опорное напряжение на котором работает серва #define A_VREF 5 // предельные уровни сигнала с сервы #define A_VMIN 0.43 #define A_VMAX 2.56 Servo servo; int lastHitAngle = 0; int hitAngleMatches = 0; bool jobDone = false; /* * Возвращает текущий угол поворота сервы исходя * из сигнала с его потенциометра */ int realAngle() { return map(analogRead(A5), A_MAX * A_VMIN / A_VREF, A_MAX * A_VMAX / A_VREF, 0, 180); } void setup() { } void loop() { if (jobDone) return; // включаем серву и просим повернуться до положения 70° servo.attach(6); servo.write(70); // ждём поворота. 5° запаса на всякие погрешности while (realAngle() < 65) ; // бросаем молоток и ждём немного пока он успокоится servo.detach(); delay(1500); // запоминаем угол после падения и сопоставляем его с // предыдущим int hitAngle = realAngle(); if (hitAngle == lastHitAngle) ++hitAngleMatches; else { lastHitAngle = hitAngle; hitAngleMatches = 0; } // если угол не менялся 5 раз - мы закончили if (hitAngleMatches >= 5) jobDone = true; }

Включаем, пробуем, работает!

Что делать с полученным опытом - вариантов много: можно сделать контроллер вроде того, что используется на кораблях для установки тяги (полный вперёд / полный назад); можно использовать серву с обратной связью как элемент автономного рулевого управления какой-нибудь машины; можно много всего. Да прибудет со всеми нами фантазия!

Рассмотрим на этом занятии устройство и принцип работы сервоприводов. Разберем два простых скетча для управления сервоприводом с помощью потенциометра на Ардуино. Также мы узнаем новые команды в языке программирования C++ — servo.write , servo.read , servo.attach и научимся подключать в скетчах библиотеку для управления сервоприводами и другими устройствами через Ардуино.

Устройство сервомотора (servo)

Сервопривод (сервомотор) является важным элементом при конструировании различных роботов и механизмов. Это точный исполнитель, который имеет обратную связь, позволяющую точно управлять движениями механизмов. Другими словами, получая на входе значение управляющего сигнала, сервомотор стремится поддерживать это значение на выходе своего исполнительного элемента.

Сервоприводы широко используются для моделирования механических движений роботов. Сервопривод состоит из датчика (скорости, положения и т.п.), блока управления приводом из механической системы и электронной схемы. Редукторы (шестерни) устройства выполняют из металла, карбона или пластика. Пластиковые шестерни сервомотора не выдерживают сильные нагрузки и удары.

Сервомотор имеет встроенный потенциометр, который соединен с выходным валом. Поворотом вала, сервопривод меняет значение напряжения на потенциометре. Плата анализирует напряжение входного сигнала и сравнивает его с напряжением на потенциометре, исходя из полученной разницы, мотор будет вращаться до тех пор пока не выравняет напряжение на выходе и на потенциометре.


Управление сервоприводом с помощью широтно импульсной модуляции

Как подключить сервопривод к Ардуино

Схема подключения сервопривода к Arduino обычно следующая: черный провод присоединяем к GND, красный провод присоединяем к 5V, оранжевый/желтый провод к аналоговому выводу с ШИМ (Широтно Импульсная Модуляция). Управление сервоприводом на Ардуино достаточно просто, но по углам поворота сервомоторы бывают на 180° и 360°, что следует учитывать в робототехнике.

Для занятия нам понадобятся следующие детали:

  • Плата Arduino Uno / Arduino Nano / Arduino Mega;
  • Макетная плата;
  • USB-кабель;
  • 1 сервопривод;
  • 1 потенциометр;
  • Провода «папа-папа» и «папа-мама».

В первом скетче мы рассмотрим как управлять сервоприводом на Arduino с помощью команды myservo.write(0) . Также мы будем использовать стандартную библиотеку Servo.h . Подключите сервомашинку к плате Ардуино, согласно схеме на фото выше и загрузите готовый скетч. В процедуре void loop() мы будем просто задавать для сервопривода необходимый угол поворота и время ожидания до следующего поворота.

Скетч для сервопривода на Ардуино

#include Servo servo1; // объявляем переменную servo типа "servo1" void setup () { servo1.attach (11); // привязываем сервопривод к аналоговому выходу 11 } void loop () { servo1.write (0); // ставим угол поворота под 0 delay (2000); // ждем 2 секунды servo1.write (90); // ставим угол поворота под 90 delay (2000); // ждем 2 секунды servo1.write (180); // ставим угол поворота под 180 delay (2000); // ждем 2 секунды }

Пояснения к коду:

  1. Стандартная библиотека Servo.h содержит набор дополнительных команд, которая позволяет значительно упростить скетч;
  2. Переменная Servo необходима, чтобы не запутаться при подключении нескольких сервоприводов к Ардуино. Мы назначаем каждому приводу свое имя;
  3. Команда servo1.attach(10) привязывает привод к аналоговому выходу 10.
  4. В программе мы вращаем привод на 0-90-180 градусов и возвращаем в начальное положение, поскольку процедура void loop повторяется циклично.

Управление сервоприводом потенциометром


Подключение сервопривода и потенциометра к Ардуино Уно

Ардуино позволяет не только управлять, но и считывать показания с сервопривода. Команда myservo.read(0) считывает текущий угол поворота вала сервопривода и его мы можем увидеть на мониторе порта. Предоставим более сложный пример управления сервоприводом потенциометром на Ардуино. Соберите схему с потенциометром и загрузите скетч управления сервоприводом.

Скетч для сервопривода с потенциометром

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" void setup () { servo.attach (10); // привязываем сервопривод к аналоговому выходу 10 pinMode (A0, INPUT); // к аналоговому входу A0 подключим потенциометр Serial .begin (9600); // подключаем монитор порта } void loop () { servo.write (analogRead (A0)/4); // передает значения для вала сервопривода Serial .println (analogRead (A0)); // выводим показания потенциометра на монитор Serial .println (analogRead (A0)/4); // выводим сигнал, подаваемый на сервопривод Serial .println (); // выводим пустую строчку на монитор порта delay (1000); // задержка в одну секунду }

Пояснения к коду:

  1. В этот раз мы присвоили имя для сервопривода в скетче, как servo ;
  2. Команда servo.write(analogRead(A0)/4) передает значения для вала сервопривода — получаемое напряжение с потенциометра мы делим на четыре и оправляем данное значение на сервопривод.
  3. Команда Serial.println (servo.read(10)) считывает значение угла поворота вала сервопривода и передает его на монитор порта.

Сервомоторы часто используются в различных проектах на Ардуино для различных функций: повороты конструкций, движение частей механизмов. Так как мотор серво постоянно стремится удерживать заданный угол поворота, то будьте готовы к повышенному расходу электроэнергии. Это будет особенно чувствительно в автономных роботах, питающихся от аккумуляторов или батареек.

Также часто читают:

Пожалуйста, оформите её согласно правилам оформления статей.

Сервопривод (следящий привод) - привод с управлением через отрицательную обратную связь , позволяющую точно управлять параметрами движения.

Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).

Проще говоря, сервопривод является «автоматическим точным исполнителем» - получая на вход значение управляющего параметра (в режиме реального времени), он «своими силами» (основываясь на показаниях датчика) стремится создать и поддерживать это значение на выходе исполнительного элемента.

К сервоприводам, как к категории приводов, относится множество различных регуляторов и усилителей с отрицательной обратной связью, например, гидро/электро/пневмо- усилители ручного привода управляющих элементов (в частности, рулевое управление и тормозная система на тракторах и автомобилях), однако термин «сервопривод» чаще всего (и в данной статье) используется для обозначения электрического привода с обратной связью по положению, применяемого в автоматических системах для привода управляющих элементов и рабочих органов.

Состав сервопривода

  1. привод - например, электромотор с редуктором , или пневмоцилиндр ,
  2. датчик обратной связи - например, датчик угла поворота выходного вала редуктора (энкодер),
  3. блок питания и управления (он же преобразователь частоты / сервоусилитель / инвертор / servodrive).
  4. вход/конвертер/датчик управляющего сигнала/воздействия (может быть в составе блока управления).

Простейший блок управления электрического сервопривода может быть построен на схеме сравнения значений датчика обратной связи и задаваемого значения, с подачей напряжения соответствующей полярности (через реле) на электродвигатель. Более сложные схемы (на микропроцессорах) могут учитывать инерцию приводимого элемента и реализовывать плавный разгон и торможение электродвигателем для уменьшения динамических нагрузок и более точного позиционирования (например, привод головок в современных жёстких дисках).

Для управления сервоприводами или группами сервоприводов можно использовать специальные ЧПУ -контроллеры, которые можно построить на базе программируемых логических контроллеров (ПЛК).

Мощность двигателей: от 0,05 до 15 кВт.
Моменты кручения (номинальные): от 0,15 до 50 Н·м и более.

Сравнение с шаговым двигателем

Другим вариантом (при отсутствии обратной связи) точного позиционирования приводимых элементов является применение шагового двигателя . В этом случае схема отсчитывает необходимое количество импульсов (шагов) от крайнего положения (этой особенности обязан характерный шум шагового двигателя в дисководах 3,5" и CD/DVD при попытках повторного чтения).

Так как датчик обычно контролирует приводимый элемент, электрический сервопривод имеет следующие преимущества перед шаговым двигателем :

  • не предъявляет особых требований к электродвигателю и редуктору - они могут быть практически любого нужного типа и мощности (а шаговые двигатели, как правило, маломощны и тихоходны);
  • автоматически компенсирует люфты в приводе и его износ;
  • гарантирует максимальную точность (по датчику) в течение всего срока эксплуатации (у шагового двигателя происходит постепенный «уход» при износе редуктора и требуется периодическая юстировка);
  • Большая возможная скорость перемещения элемента (у шагового двигателя меньшая максимальная скорость по сравнению с другими типами электродвигателей);
  • затраты энергии пропорциональны сопротивлению элемента (на шаговый двигатель постоянно подаётся номинальное напряжение с запасом по возможной перегрузке);
  • мгновенная диагностика в случае поломки (заедания) привода;

Недостатки в сравнении с шаговым двигателем

  • необходимость в дополнительном элементе - датчике;
  • сложнее блок управления и логика его работы (требуется обработка результатов датчика и выбор управляющего воздействия, а в основе контроллера шагового двигателя - просто счётчик);
  • проблема фиксирования: обычно решается постоянным притормаживанием перемещаемого элемента либо вала электродвигателя (что ведёт к потерям энергии) либо применение червячных/винтовых передач (усложнение конструкции) (в шаговом двигателе каждый шаг фиксируется самим двигателем).
  • сервоприводы, как правило, дороже шаговых.

Сервопривод, однако, возможно использовать и с приводом элементов на базе шагового двигателя или в дополнение к нему, до некоторой степени совместив их достоинства (у шагового двигателя - относительно большой момент и фиксация положения, а также предварительное позиционирование без обратной связи). Так сделано, например, в приводе каретки головки CD/DVD-приводов - обратная связь появляется, когда головка начинает считывать данные с диска.

Виды сервопривода

1. Сервопривод вращательного движения

2. Сервопривод линейного движения

  • Плоский
  • Круглый

Синхронный сервопривод - позволяет точно задавать угол поворота (с точностью до угловых минут), скорость вращения, ускорение. Разгоняется быстрее асинхронного, но в разы дороже.

Асинхронный сервопривод - позволяет точно задавать скорость, даже на низких оборотах.

Линейные двигатели - могут развивать огромные ускорения (до 70 м/с²).

3. По принципу действия

  • Электромеханический
  • Электрогидромеханический

У электромеханического сервопривода движение формируется электродвигателем и редуктором.

У электрогидромеханического сервопривода движение формируется системой поршень-цилиндр. У данных сервоприводов быстродействие на порядок выше в сравнении с электромеханическими.

Применение

Сервоприводы применяются для точного (по датчику) позиционирования (чаще всего) приводимого элемента в автоматических системах:

  • управляющие элементы механической системы (заслонки, задвижки, углы поворота)
  • рабочие органы и заготовки в станках и инструментах

Сервоприводы вращательного движения используются в:

  • приводах станков ЧПУ ,
  • полиграфических станках,
  • приборах,
  • авиамоделировании.

Сервоприводы линейного движения используются, например, в автоматах установки электронных компонентов на печатную плату.

Серводвигатель

Сервомотор для авиамоделизма

Cервопривод с мотором, предназначенный для приведения в движение устройств управления через поворот выходного вала, применяются в таких областях, как открытие и закрытие клапанов, переключатели и так далее.

Важными характеристиками сервомотора являются динамика двигателя, равномерность движения, энергоэффективность .

Серводвигатели широко применяются в промышленности , например, в металлургии , в станках с ЧПУ , прессо-штамповочном оборудовании, автомобильной промышленности , тяговом подвижном составе железных дорог .

В основном в серво использовались 3 полюсные коллекторные двигатели в которых тяжелый ротор с обмотками вращается внутри магнитов.

Первое усовершенствование, которое было применено - увеличение количества обмоток до 5. Таким образом, вырос вращающий момент и скорость разгона. Второе усовершенствование - это изменение конструкции мотора. Стальной сердечник с обмотками очень сложно раскрутить быстро. Поэтому конструкцию изменили - обмотки находятся снаружи магнитов, и исключено вращение стального сердечника. Таким образом, уменьшился вес двигателя, уменьшилось время разгона и возросла стоимость.

Ну и наконец, третий шаг - применение бесколлектроных двигателей. У бесколлекторных двигателей выше КПД, так как нет щеток, и трущихся частей. Они более эффективны, обеспечивают большую мощность, скорость, ускорение, вращающий момент.

См. также

  • Частотно-регулируемый привод - при некоторых условиях является альтернативой сервоприводу.
Похожие публикации