Ибп как он устроен. Типы ИБП: принцип работы и отличия

Источник бесперебойного питания - компонент системы питания, который располагают между нагрузкой и питающей сетью. Главная функция ИБП состоит в обеспечении бесперебойного питания. Как устроен бесперебойник? Упрощённая схема ИБП включает аккумуляторные батареи и специальные элементы ИБП, компенсирующие возмущения в магистральной сети, а именно инвертор, выпрямитель, фильтр и в некоторых случаях . На сегодняшний день бесперебойники разделяют на три группы. У каждой из групп принцип работы ИБП имеет свои особенности.

Ключевым компонентом ИБП являются . Именно АКБ определяют сколько работает ИБП при отключении питания в сети. Как правило, в ИБП используются свинцово-кислотные аккумуляторы, имеющие следующие параметры: напряжение 12В и ёмкость 7Ач или 9Ач. АКБ относятся к типу герметичных и не обслуживаемых. В самых простых ИБП используется 1 аккумулятор, а в мощных бесперебойниках их количество может быть во много раз больше.

Резервные ИБП

Так называемые резервные ИБП являются самыми простыми и доступными. Принцип работы бесперебойника данного типа крайне прост: электропитание нагрузки осуществляется через сеть, если там имеется напряжение, в противном случае происходит переключение питания от АКБ. Зарядка АКБ осуществляется вовремя работы ИБП. Согласно статистике, эффективность таких ИБП при сбоях питания составляет 55-60%.

В большинстве случаев рассказать о том, как работает ИБП для компьютера, можно сославшись на принцип работы . Большинство домашних бесперебойников для компьютера выполнены по данной технологии. Уровень защиты, который они могут обеспечить является самым низким из всех существующих бесперебойников. Фильтрация сигнала осуществляется лишь частично. Зачастую такого уровня защиты для домашней техники вполне достаточно, так как качество питания в таких сетях несколько выше, чем в промышленных.

Резервные ИБП прекрасно работают в паре с компьютером, но при этом они абсолютно не совместимы для работы в паре с насосами, котлами отопления и другой подобной техникой, так как работа ИБП резервного типа не обеспечивает синусоидальную форму напряжения . Для компьютеров это не критично, так как в них используются коммутируемые источники питания. Этот факт позволяет таким устройствам выдержать небольшой провал питания за счёт наличия некоторого количества энергии в собственных конденсаторах. Время переключения офлайн с сети на АКБ колеблется от 2 до 15 миллисекунд. Схема работы ИБП включает в себя инвертор, который превращает постоянный ток АКБ в переменный. Следует заметить, что такие ИБП, как правило, являются маломощными.

Линейно-интерактивные ИБП

Устройство и работа источников бесперебойного питания интерактивного типа практически идентичен резервным ИБП. Исключением является способность стабилизации напряжения, которое осуществляется с помощью коммутирующего устройства. Преимущество стабилизации заключается в отсутствии необходимости на переключение питания при существенных отклонениях напряжения. Отклонения входного напряжения может достигать порядка 20% от нормального значения. Выходное напряжение бесперебойника при этом практически не колеблется. Эффективность защиты линейно-интерактивных ИБП составляет 85%.

В сравнении с резервными ИБП они обеспечивают более высокий уровень защиты, но уступают . Работа бесперебойника линейно-интерактивно типа может быть разделена на две группы. Устройства, относящие к первой группе, дают на выходе аппроксимированную синусоиду, то есть ступенчатую. Вторая группа выдаёт «чистую» синусоиду без каких-либо искажений. Последние в некоторых случаях могут стать заменой онлайн ИБП. Наличие чистой синусоиды на выходе позволяет применять их для защиты электродвигателей и котлов отопления.

Онлайн ИБП

Самые надёжные и высокотехнологичные ИБП относятся к типу онлайн. В них реализована технология двойного преобразования – самая прогрессивная из всех существующих. Степень защиты обеспечиваемый такими устройствами стремится к 100% независимо от того какие режимы работы ИБП активны: от сети или АКБ.

Как работает ИБП с онлайн топологией? На самом деле принцип работы вложен в само название. Ток на входе преобразуется на выпрямителе в постоянный, после чего инвертор преобразует его снова в переменный. Переменный ток на выходе обладает идеальными параметрами как по форме напряжения, так и по его значению. ИБП содержит в себе резервную линию - байпас , по которой осуществляется питание в случае неисправности какого-либо из узлов источника бесперебойного питания.

Принято говорить, что время переключения на АКБ равно нулю, но на самом деле аккумуляторные батареи всегда подключены к цепи. Поэтому данные ИБП и называются онлайн. Такое устройство бесперебойника позволяет защитить нагрузку от любых видов возмущений, которые могут встречаться в магистральной сети.

Применяются такие ИБП для защиты критической и очень чувствительной нагрузки. Все мощные ИБП выполняются по данной технологии. Несмотря на высокую мощность применяются дополнительные решения, которые позволяют увеличить автономность. Чаще всего конструкция позволяет ИБП - как пользоваться в связке с генератором, так и с внешними АКБ.

Однако, двойное преобразование имеет и свои недостатки. Устройство ИБП является довольно сложным, что влияет на его стоимость не лучшим образом. Наличие двойного преобразования понижает КПД, но на современных ИБП он довольно высокий. Реализованы специальные технологии энергосбережения, позволяющие довести коэффициент полезного действия до максимальных значений. Кроме того, процесс двойного преобразования сопровождается тепловыделением и шумами. Стоит признать, что удельный вес всех этих минусов является несравнимо малым в сравнении со всеми достоинствами, а в главную очередь с уровнем защиты.

Отечественное электроснабжение характеризуется невысокой надежностью и неудовлетворительным Это связано с устаревшими электрическими сетями, износом оборудования, низкими характеристиками преобразователей энергии, переходными процессами у источников и пользователей электричества, природными и климатическими факторами. В подобных условиях крайне необходимы системы бесперебойного питания для обеспечения работы потребителей как первой, так и остальных категорий.

Для владельцев квартир и домов стабильная работа электросети также важна. Прекращение работы бытовых приборов - это не самая большая из бед. Гораздо важней безотказное функционирование систем жизнеобеспечения, в частности системы отопления, если она напрямую зависит от электроснабжения. На помощь приходит бесперебойное питание UPS (ИБП) - устройство, защищающее электроприемники от отключения за счет накопления электроэнергии в аккумуляторных батареях (АКБ) и гарантирующее необходимое качество энергии (КЭ) в автономном и сетевом режимах работы.

Прежде чем наметить подход к созданию питания нагрузок без сбоев, следует узнать, какие сбои можно ожидать от отечественных электросетей.

Сбои питания в электросетях

Пониженное напряжение - частое явление в электроснабжении. Но оно не особенно преобладает над повышенным, которое также часто встречается. В ночное время напряжение стабильное, днем оно снижается, а вечером, когда большая часть нагрузок отключается, возрастает.

Нестабильная частота также является сбоем, хотя довольно редким. При высокой загруженности сети она может снизиться до 45 Гц, что приводит к существенным искажениям сигнала, негативно влияющим на работу ИБП. Некоторые устройства воспринимают снижение частоты как аварию, и батарея может быстро разрядиться.

Полное отключение электричества - это не такой уж редкий случай. Электрики не очень считаются с работой электроники и могут неожиданно обесточить здание. Мгновенного отключения электричества достаточно для потери информации на компьютере. При перегрузке сетей могут происходить отключения электричества. Поэтому важно, как надежно поставляет система UPS бесперебойное питание.

Классификация ИБП

Их объединяют в три группы:

  1. Маломощные ИБП для подключения через электрические розетки. Исполнение бывает настольным или напольным, а мощность составляет от 0,25 до 3 кВт.
  2. Устройства средней мощности - от 3 до 30 кВт - содержат блок розеток, встроенных внутрь, или включаются также через группы розеток в сети питания потребителей от щита управления. Устройства изготавливаются для размещения как в офисах, так и в отдельных оборудованных помещениях.
  3. ИБП большой мощности - от 10 до 800 кВт. Располагаются в электромашинных помещениях. Их собирают в группы и создают энергетические системы высокой мощности - до нескольких тысяч кВт.

Типы ИБП

Сейчас распространены 4 типа UPS (ИБП). Общими для всех свойствами являются:

  • фильтрация от импульсов и шумов;
  • устранение искажений формы сигнала;
  • стабилизация напряжения (не у всех моделей);
  • поддержание АКБ заряженной;
  • когда батарея ИБП разрядится, она сначала подает сигнал, а затем отключает потребителя.

Off-line UPS

Принцип действия устройств данной модификации состоит в питании потребителя от действующей сети и мгновенном переключении на автономное резервное питание при аварийных ситуациях (4-12 мс). Они проще и дешевле других типов.

ИБП обычно переключается на работу от встроенного аккумулятора.

При работе от сети устройство подавляет шумы с импульсами и поддерживает напряжение на заданном уровне. Часть энергии затрачивается на подзарядку АКБ. В случае работы сети в нестандартном режиме происходит переключение потребителя на работу от батареи. Каждая модель ИБП по-своему определяет необходимость перехода на этот режим. Время работы через батарею зависит от ее характеристик и потребляемой нагрузкой мощности. В случае разрядки источника резервного питания подается команда на отключение потребителя. Если напряжение сети достигает нормального уровня, ИБП переходит в обычный сетевой режим работы, начинается зарядка АКБ.

Линейно-интерактивные

Модели Line interactive ups оснащены стабилизаторами, которые работают постоянно и обеспечивают редкое подключение аккумуляторов.

Устройство взаимодействует с сетью, контролируя амплитуду и форму сетевого напряжения.

При снижении или увеличении напряжения блок корректирует его величину, переключая отводы автотрансформатора. Таким путем поддерживается его номинальное значение. Если параметр выходит за допустимые пределы и диапазона переключений уже не хватает, ИБП переходит на резервное питание от батареи. Блок может отключаться от основного питания, когда поступает сигнал искаженной формы. Есть модели, которые корректируют форму напряжения без переключения на работу от АКБ.

Феррорезонансный ИБП

Устройство содержит феррорезонансный трансформатор, который работает как стабилизатор напряжения. Его преимуществом является накапливание энергии в магнитном поле, которая высвобождается при переключениях в течение 8-16 мс. Этого промежутка времени достаточно для выхода ИБП на новый режим работы.

Трансформатор выполняет дополнительную функцию фильтра шумов. Искажение входного напряжения не влияет на форму выходного, которая остается синусоидальной.

Double Conversion UPS

Устройство двойного преобразования энергии работает по принципу выпрямления напряжения сети, а затем опять превращает его в переменное стабилизированное. Здесь применяется более мощный выпрямитель, который не только подзаряжает батарею, но также снабжает инвертор стабилизированным постоянным напряжением.

С выхода устройства переменное стабилизированное напряжение поступает на нагрузку.

Когда двойного преобразования недостаточно для корректировки напряжения сети, от батареи поступает дополнительный заряд к инвертору. Переключений не происходит, но режим уже другой.

При выходе из строя инвертора происходит переключение на работу от сети через байпас. Выбор ИБП двойного преобразования для частного использования является нерациональным из-за больших потерь энергии. Данный вид защиты применяют организации, где требуется высокая надежность оборудования.

Виды систем

Системы бесперебойного электроснабжения могут быть централизованными или распределенными. В первом случае на все здание или отдельный этаж работает один ИБП, который справляется со всеми нагрузками.

Бесперебойного питания включают несколько устройств защиты, каждое из которых работает на один компьютер или другую единицу оборудования. Они достаточно эффективны.

Преимущества распределенной системы следующие:

  1. ИБП подбирается специально для отдельного устройства, являющегося наиболее важным или работающего в тяжелых условиях.
  2. Система может постепенно наращиваться, начиная с защиты сервера и переходя на рабочие станции.
  3. Вышедшие из строя ИБП можно заменить на другие, с менее важных элементов системы.
  4. Маломощный ИБП не нуждается в установке и обслуживании специальным персоналом.
  5. Возможность подключения к обычной электросети через розетки.
  6. ИБП применяются независимо друг от друга.

Централизованные системы бесперебойного питания включают ИБП высокого уровня, которые лучше защищают оборудование. Несмотря на их высокую стоимость, в целом достигается экономия средств, поскольку одно устройство обходится дешевле, чем несколько. Но для простых компьютеров система будет стоить дороже, так как для ее обслуживания требуется персонал высокой квалификации или услуги специализированных фирм, производящих монтаж систем бесперебойного питания и их обслуживание.

Она необходима в следующих случаях:

  • компьютеры являются основной нагрузкой сети;
  • некоторые организации нуждаются в очень надежных системах, например банки;
  • потребители существенно различаются по мощности: компьютерная система, связь, система безопасности.

На что обращать внимание при выборе ИБП?

При выборе системы бесперебойного электроснабжения необходимо учитывать несколько важных факторов. Перечислим основные из них.

От чего защищается оборудование?

Прежде всего необходимо провести измерения напряжения в электрической сети. Минимальным циклом по длительности будут сутки. Он в наибольшей степени отражает работу электрической сети. Если приходится работать в выходные дни, нужно получить информацию по недельному циклу, в течение дня и ночи.

Важно определить максимальное и минимальное напряжение, а также мощность и частоту импульсов в сети. Прибором может служить или регистратор.

Простейшим способом для пользователя являются замеры напряжения, во время которых, по его мнению, напряжение достигает максимума и минимума. Не стоит оставлять без внимания выходные дни.

Если у хозяина квартиры есть мощное оборудование, надо измерить напряжение в домашней сети при его включении и выключении. Следует выяснить, как часто отключается напряжение в электросети дома и по каким причинам. Важно наличие в квартире заземляющего провода. При этом следует выяснить, насколько надежно он подключен к шине этажного щита.

Вид защищаемого оборудования

Составляется список оборудования, для которого необходимо применение ИБП. При этом надо знать потребляемую каждым Достаточно определить ее номинальное значение, которое есть в технических характеристиках. Некоторое оборудование иногда потребляет максимальную энергию, в несколько раз превышающую номинал. Для него следует установить запас по мощности.

Период автономной работы

Здесь важно определить, за какой период можно безопасно сохранить данные или завершить необходимые технологические операции (передача информации, сохранение файлов, прием сообщения).

Необходимый персонал

В зависимости от сложности системы требуется определенный штат специалистов для ее эксплуатации. Это необходимо выяснить, чтобы правильно рассчитать все затраты. Цена системы защиты не должна превышать 10 % от стоимости основного оборудования.

ИБП для дома

Для среднего коттеджа удобна система бесперебойного питания UPS (ИБП) мощностью около 15 кВт. Чтобы обеспечить автономную работу на 2-3 часа, нужны 4 аккумулятора суммарной емкостью 2000 Ач. Они позволяют аккумулировать электроэнергию около 7 кВтч.

В доме наиболее важными являются система отопления и бытовая техника с компьютером. Стоимость ИБП зависит от мощности, количества аккумуляторов и производителя. Для котла можно приобрести источник мощностью 360 Вт по цене 7 тыс. Для всего дома понадобится мощность ИБП до 15 кВт, цена которого составляет более 70 тыс. руб.

Кроме преобразователей, необходимы батареи, которые нужно периодически менять. ИБП для дома обходится в круглую сумму. Особенно затратными являются аккумуляторные системы бесперебойного питания.

Несмотря на это, можно сэкономить на ремонте остальной техники. Кроме того, есть альтернативные варианты с применением генераторов. Иногда можно обойтись установкой стабилизаторов напряжения, которые справляются со многими задачами, включая корректное отключение оборудования.

Современные ИБП оснащены понятным интерфейсом. По дисплею можно следить за работой системы, где основными параметрами являются напряжение на входе и выходе, расход мощности, схема работы, заряд батарей.

Какой выбрать ИБП, зависит от потребностей пользователя. Для домашнего компьютера может быть достаточно энергии на время его отключения. Для бесперебойной работы котла в течение 8-9 час потребуется защитное устройство на 1 кВт с тремя АКБ по 65 А/ч.

Заключение

Системы предназначены для обеспечения автономной работы электроприборов и электронной техники непродолжительное время. Основным показателем является мощность ИБП и емкость АКБ. Целесообразно выбирать оборудование, содержащее стабилизатор напряжения.

Время работы через батарею зависит от ее характеристик и потребляемой нагрузкой мощности. В случае разрядки источника резервного питания подается команда на отключение потребителя. Если напряжение сети достигает нормального уровня, ИБП переходит в обычный сетевой режим работы и начинается зарядка АКБ.

В статье рассмотрены виды ИБП, принципы работы ИБП, а также приведены реальные осциллограммы напряжений на выходе.

Для начала – немного общей терминологии. Источники бесперебойного питания (сокращенно – ИБП) у нас так же называют UPS, от английского сокращения Uninterruptable Power Supply (беспрерывный источник питания). Поэтому говорят и УПС (UPS) и ИБП, кому как удобнее. Я в статье буду называть и так, и эдак.

Зачем нужен UPS (ИБП)

Принцип работы ИБП раскрывается в названии – это такой источник, на выходе которого напряжение есть всегда . Но мы здесь собрались технари-реалисты, и понимаем, что ничего вечного нет, поэтому ниже разберемся в принципе действия.

ИБП в основном используются там, где пропадание электропитания может вызвать негативные последствия. Например, питание компьютеров и серверов, питание устройств связи и распределения сигналов (роутеры), питание устройств, автоматическая перезагрузка (перезапуск) которых без участия человека невозможна.

Как мой читатель доработал ИБП для стратегически важной системы (2 сервера, и т.д.). Кроме того, усовершенствовал схему, и добавил возможность использования обычного автомобильного аккумулятора.

Для бытовых вещей это прежде всего компьютеры и системы отопления.

Следует понимать, что ИБП выбираются на время работы нагрузки 10-15 мин, редко до получаса. Предполагается, что за это время питание появится, либо человек (оператор) предпримет необходимые действия (сохранит данные, позвонит в энергослужбу предприятия, завершит технологический процесс).

ИБП нельзя рассматривать в качестве резервного источника питания. Он является лишь аварийным источником, и в лучшем случае используется очень редко, в общей сложности не более 10 минут в год (несколько раз, на время не более минуты). Если это время больше, то следует задуматься о повышении качества электропитания.

Резервным источником питания можно считать такие источники, которые полностью могут заменить основное питание на длительное время, от нескольких часов до нескольких суток. Это может быть другая линия (см.статью про ), ветряной генератор. Теоретически, для этих целей может служить и ИБП, но для этого нужны аккумуляторы огромной ёмкости, что значительно повлияет на цену такой системы.

Виды источников бесперебойного питания

Виды (типы) ИБП имеют множество названий, но их всё равно ровно три. Разберёмся.

Итак, три основных вида ИБП:

Back UPS

Другие равнозначные названия – Off-line UPS, Standby UPS, ИБП резервного типа. Самые распространенные УПС, используются для большинства видов бытовой и компьютерной техники.

Back просто переключает нагрузку на питание от батарей при выходе входного напряжения за пределы. Нижний предел у разных моделей – около 180В, верхний – около 250В. Переходы на батарею и обратно – с гистерезисом. То есть, например, при понижении переход на батарею состоится при 180 В и менее, а обратно – при 185 и более. Тот же принцип действует у всех типов ИБП.

Чем-то напоминает , которое отключает нагрузку, а Back UPS не отключает, а переключает на аккумулятор, что позволяет ей некоторое время поработать.

Smart UPS

Другие названия – Line-Interactive, ИБП интерактивного типа. Недалеко ушли по принципу действия от Back.

Smart UPS действуют умнее, как следует из названия. Они ещё дополнительно переключают внутренний автотрансформатор, в некотором смысле стабилизируя входное напряжение. И только в крайнем случае переходят на батарею.

Таким образом, норма напряжения на выходе поддерживается при бОльших отклонениях на входе (150…300В). Автотрансформатор имеет несколько ступеней переключения, поэтому Умный УПС до последнего переключает выводы автотрансформатора, включая аккумулятор лишь в последний момент. Это позволяет экономить батарею, включая её в работу лишь при полном пропадании питания.

Данное устройство напоминает со ступенчатым переключением обмоток автотрансформатора. С той лишь разницей, что при выходе за рабочие пределы стабилизатор будет бессилен, а наша “умница” введёт в работу аккумулятор, и питание не пропадёт.

Online UPS

Другие названия – онлайн, источник бесперебойного питания с двойным преобразованием, инверторный. Совершенно другой принцип действия, для любителей чистого синуса. Энергия со входа преобразуется в постоянное напряжение, и поступает на инвертор, генерирующий чистый синус. И одновременно – поддерживает аккумулятор в 100% готовности. При необходимости инвертор продолжает работать так же, только питание на него поступает с аккумулятора.

Используется для аварийного питания техники, чувствительной к форме выходного напряжения – например, газовые котлы, сервера, профессиональная аудио-видео аппаратура и другое стратегически важное оборудование.

Минусов онлайн ИБП два – цена и КПД. КПД низкий, т.к. такой ИБП включен в работу постоянно, что следует из названия. В отличии от двух других типов.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Существуют разновидности онлайн УПС, в которых используется так называемый “сквозной ноль”, для правильной работы газовых электрокотлов. Это связано с тем, что такие котлы чувствительны к наличию реального нуля, для правильного розжига.

Исследование ИБП с помощью осциллографа

А теперь – самое интересное.

Напряжение на выходе Back UPS

Провёл исследование с использованием осциллографа Fluke 124. Осциллограммы (форма импульсов и колебаний на выходе ups) привожу и комментирую ниже.

Что видно по этой временной диаграмме? Период 20мс, частота 50Гц, амплитуда 315В. Стоит отметить, что фаза синуса и генерируемых импульсов совпадает, что хорошо. При пропадании сетевого напряжения ИБП мешкается 5-7 мс, и затем идут импульсы, которые называются “квази-синус”. Вот они:

Back UPS. Напряжение на выходе при питании от батарей.

Осциллограф померял RMS напряжение (среднеквадратическое), оно соответствует норме. Однако, когда я измерил это же напряжение мультиметром, я получил значение 155 В. Почему на выходе UPS низкое напряжение?

Дело в том, что мультиметр меряет только первую гармонику с частотой 50Гц. Для синуса всё гладко. Но если измерять напряжение таких вот импульсов, надо мерять именно RMS, среднеквадратическое, иначе не будут учтены следующие гармоники – 100, 150, 200 Гц. А они составляют значительную часть энергии, до 30%. Эту особенность знают производители UPS, и чтобы не заморачиваться (и не повышать цену на свои изделия), выдают на наши приборы такие импульсы с амплитудой около 370В.

Подробнее об измерении среднеквадратического несинусоидального напряжения – на видео:

Вот укрупненный график, где видно, что напряжение после переключения сначала повышается на пол секунды до 400В, а потом стабилизируется:

Back UPS. Выход, длительность 2 секунды

А вот как меняется форма напряжения на выходе Back-UPS в момент перехода с батарейного на сетевое питание:

Back UPS, – Напряжение на выходе ИБП при переходе с батареи на сеть. Форма импульсов на выходе ups

Тоже фаза не меняется, всё замечательно. Подключал на выход ИБП , переключал туда-сюда режимы питания – пускатель втянут надежно, никаких проблем.

В качестве испытуемого был ИБП APC Back-500-RS, параметры на фото ниже:

Параметры Back UPS – задняя панель

Напряжение на выходе Smart UPS

Теперь приведу для полноты картины осциллограммы напряжений на выходе Smart UPS. Испытаниям подвергался UPS Ippon Smart Power Pro 1000.

Smart UPS_Сеть-батарея

Время переключения также для всей современной аппаратуры несущественно – менее 7 мс.

Плавного изменения напряжения на входе я не делал, поскольку не было такой цели. Полагаю, что в данном случае Умный ИБП ведёт себя точно так же, как и релейный стабилизатор напряжения.

Данные исследования проведены в рамках проекта по промышленного холодильника.

Удивляет полное отсутствие информации о таких распространенных приборах, как источники бесперебойного питания. Мы прорываем информационную блокаду и приступаем к публикации материалов по их устройству и ремонту. Из статьи Вы получите общее представление о существующих типах бесперебойников и более подробное, на уровне принципиальной схемы, - о наиболее распространенных моделях Smart-UPS.

Надежность работы компьютеров во многом определяется качеством электрической сети. Последствиями таких перебоев электропитания, как скачки, подъемы, спады и потеря напряжения, могут оказаться блокировка клавиатуры, потеря данных, повреждение системной платы и пр. Для защиты дорогостоящих компьютеров от неприятностей, связанных с силовой сетью, используют источники бесперебойного питания (ИБП). ИБП позволяет избавиться от проблем, связанных с плохим качеством электропитания или его временным отсутствием, но не является долговременным альтернативным источником электропитания, как генератор.

По данным экспертно-аналитического центра «СК ПРЕСС», в 2000 г. объем продаж ИБП на российском рынке составил 582 тыс. шт. Если сравнить эти оценки с данными о продажах компьютеров (1,78 млн. штук), то получается, что в 2000 г. каждый третий приобретенный компьютер оснащается индивидуальным ИБП.

Подавляющую часть российского рынка ИБП занимает продукция шести компаний: APC, Chloride, Invensys, IMV, Liebert, Powercom. Продукция компании APC уже который год сохраняет лидирующую позицию на российском рынке ИБП.

ИБП делятся на три основных класса: Off-line (или stand-by), Line-interactive и On-line. Эти устройства имеют различные конструкции и характеристики.

Рис. 1. Блок-схема ИБП класса Off-line

Блок-схема ИБП класса Off-line приведена на рис. 1. При работе в нормальном режиме нагрузка питается отфильтрованным напряжением электросети. Для подавления электромагнитных и радиочастотных помех во входных цепях используются фильтры EMI/RFI Noise на металло-оксидных варисторах. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. Форма его выходного напряжения - прямоугольные импульсы положительной и отрицательной полярности с амплитудой 300 В и частотой 50 Гц. ИБП класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых фирмой АРС ИБП класса Off-line модели Back-UPS находится в диапазоне 250...1250 ВА, а модели Back-UPS Pro -в диапазоне 2S0...1400 ВА.

Рис. 2. Блок-схема ИБП класса Line-interactive

Блок-схема ИБП класса Line-interactive приведена на рис. 2. Так же, как и ИБП класса Off-line, они ретранслируют переменное напряжение электросети в нагрузку, поглощая при этом относительно небольшие всплески напряжения и сглаживая помехи. Входные цепи используют фильтр EMI/RFI Noise на металло-оксидных варисторах для подавления электромагнитных и радиочастотных помех. Если в электросети произошла авария, то ИБП синхронно, без потери фазы колебания, включает инвертор для питания нагрузки от батарей, при этом синусоидальная форма выходного напряжения достигается фильтрацией ШИМ-колебания. Схема использует специальный инвертор для подзарядки батареи, который работает и во время скачков сетевого напряжения. Диапазон работы без подключения батареи расширен за счет использования во входных цепях ИБП автотрансформатора с переключаемой обмоткой. Переход на питание от батареи происходит, когда напряжение электросети выходит за границы диапазона. Мощность выпускаемых фирмой АРС ИБП класса Line-interactive модели Smart-UPS составляет 250...5000 ВА.

Рис. 3. Блок-схема ИБП класса On-line

Блок-схема ИБП класса On-line приведена на рис. 3. Эти ИБП преобразуют переменное входное напряжение в постоянное, которое затем с помощью ШИМ-инвертора преобразуется снова в переменное со стабильными параметрами. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения равно нулю. За счет инерционного звена постоянного тока, каким является батарея, происходит изоляция нагрузки от аномалий сети и формируется очень стабильное выходное напряжение. Даже при больших отклонениях входного напряжения ИБП продолжает питать нагрузку чистым синусоидальным напряжением с отклонением не более +5% от устанавливаемого пользователем номинального значения. ИБП класса On-line фирмы АРС имеют следующие выходные мощности: модели Matrix UPS - 3000 и 5000 ВА, модели Symmetra Power Array - 8000, 12000 и 16000 ВА.

Модели Back-UPS не используют микропроцессор, а в моделях Back-UPS Pro, Smart-UPS, Smart/VS, Matrix и Symmetna микропроцессор используется.

Наибольшее распространение получили устройства: Back-UPS, Back-UPS pro, Smart-UPS, Smart-UPS/VS.

Такие устройства, как Matrix и Symmetna, используются в основном для банковских систем.

В этой статье рассмотрим конструкцию и схему моделей Smart-UPS 450VA...700VA, применяемых для питания персональных компьютеров (ПК) и серверов. Их технические характеристики приведены в табл. 1.

Таблица 1. Технические характеристики моделей Smart-UPS фирмы АРС

Модель 450VA 620VA 700VA 1400VA
Допустимое входное напряжение, В 0...320
Входное напряжение при работе от сети *, В 165...283
Выходное напряжение *, В 208...253
Защита входной цепи от перегрузки Возвращаемый в исходное положение автоматический выключатель
Диапазон частоты при работе от сети, Гц 47...63
Время переключения на питание от батареи, мс 4
Максимальная мощность в нагрузке, ВА (Вт) 450(280) 620(390) 700(450) 1400(950)
Выходное напряжение при работе от батареи, В 230
Частота при работе от батареи, Гц 50 ± 0,1
Форма сигнала при работе от батареи Синусоида
Защита выходной цепи от перегрузки Защита от перегрузки и короткого замыкания, при перегрузке выключение с фиксацией
Тип батареи Свинцовая герметичная, необслуживаемая
Количество батарей х напряжение, В, 2 x 12 2 x 6 2 x 12 2 x 12
Емкость батарей, Ач 4,5 10 7 17
Срок службы батареи, лет 3...5
Время полного заряда, ч 2...5
Размеры ИБП (высота х ширина х длина), см 16,8x11,9x36,8 15,8x13,7x35,8 21,6х17х43,9
Масса нетто (брутто), кг 7,30(9,12) 10,53(12,34) 13,1(14,5) 24,1(26,1)

* Регулируется пользователем с помощью программного обеспечения PowerChute.

ИБП Smart-UPS 450VA...700VA и Smart-UPS 1000VA...1400VA имеют одинаковую электрическую схему и отличаются емкостью батарей, количеством выходных транзисторов в инверторе, мощностью силового трансформатора и габаритами.

Рассмотрим параметры, характеризующие качество электроэнергии, а также терминологию и обозначения.

Проблемы с электропитанием могут выражаться в виде:

  • полного отсутствия входного напряжения - blackout;
  • временного отсутствия или сильного падения напряжения, вызванного включением в сеть мощной нагрузки (электромотора, лифта и т.п.) - sag или brownout;
  • мгновенного и очень мощного повышения напряжения, как при ударе молнии - spike;
  • периодического повышения напряжения, длящегося доли секунды, вызванного, как правило, изменениями нагрузки в сети - surge.
  • В Росси провалы, пропадания и скачки напряжения как вверх, так и вниз составляют приблизительно 95% отклонений от нормы, остальное - шумы, импульсные помехи (иголки), высокочастотные выбросы.

    В качестве единиц измерения мощности используются Вольт-Амперы (ВА, VA) и Ватты (Вт, W). Они отличаются коэффициентом мощности PF (Power Factor):

    Коэффициент мощности для компьютерной техники равен 0,6...0,7. Число в обозначении моделей ИБП фирмы АРС означает максимальную мощность в ВА. Например, модель Smart-UPS 600VA имеет мощность 400 Вт, а модель 900VA - 630 Вт.

    Структурная схема моделей Smart-UPS и Smart-UPS/VS показана на рис. 4. Сетевое напряжение поступает на входной фильтр EM/RFI, служащий для подавления помех электросети. При номинальном напряжении электросети включены реле RY5, RY4, RY3 (контакты 1, 3), RY2 (контакты 1, 3), RY1, и входное напряжение проходит в нагрузку. Реле RY3 и RY2 используются для режима подстройки выходного напряжения BOOST/TRIM. К примеру, если напряжение сети увеличилось и вышло за допустимый предел, реле RY3 и RY2 подключают дополнительную обмотку W1 последовательно с основной W2. Образуется автотрансформатор с коэффициентом трансформации

    K = W2/(W2 + W1)

    меньше единицы, и выходное напряжение падает. В случае уменьшения сетевого напряжения дополнительная обмотка W1 реверсируется контактами реле RY3 и RY2. Коэффициент трансформации

    К = W2/(W2 - W1)

    становится больше единицы, и выходное напряжение повышается. Диапазон регулировки составляет ±12%, величина гистерезиса выбирается программой Power Chute.

    При пропадании напряжения на входе выключаются реле RY2...RY5, включается мощный ШИМ-инвертор, питающийся от батареи, и в нагрузку поступает синусоидальное напряжение 230 В, 50 Гц.

    Многозвенный фильтр подавления помех электросети состоит из варисторов MV1, МV3, MV4, дросселя L1, конденсаторов С14...С16 (рис. 5). Трансформатор СТ1 анализирует высокочастотные составляющие напряжения сети. Трансформатор СТ2 является датчиком тока нагрузки. Сигналы с этих датчиков, а также датчика температуры RTH1 поступают на аналого-цифровой преобразователь IC10 (ADC0838) (рис. 6).

    Трансформатор Т1 является датчиком входного напряжения. Команда на включение устройства (АС-ОК) подается с двухуровневого компаратора IC7 на базу Q6. Трансформатор Т2 - датчик выходного напряжения для режима Smart TRIM/BOOST. С выводов 23 и 24 процессора IC1 2 (рис. 6) сигналы BOOST и TRIM подаются на базы транзисторов Q43 и Q49 для переключения реле RY3 и RY2 соответственно.

    Сигнал синхронизации по фазе (PHAS-REF) с вывода 5 трансформатора Т1 поступает на базу транзистора Q41 и с его коллектора на вывод 14 процессора IC12 (рис. 6).

    В модели Smart-UPS используется микропроцессор IC12 (S87C654), который:

  • контролирует наличие напряжения в электросети. Если оно пропадает, то микропроцессор подключает мощный инвертор, работающий от батареи;
  • включает звуковой сигнал для уведомления пользователя о проблемах с электропитанием;
  • обеспечивает безопасное автоматическое закрытие операционной системы (Netware, Windows NT, OS/2, Scounix и Unix Ware, Windows 95/98), сохраняя данные через двунаправленный коммутационный порт при наличии установленной программы Power Chute plus;
  • автоматически корректирует падения (режим Smart Boost) и превышения (режим Smart Trim) напряжения электросети, доводя выходное напряжение до безопасного уровня без перехода на работу от батареи;
  • контролирует заряд батареи, тестирует ее реальной нагрузкой и защищает ее от перезаряда, обеспечивая непрерывную зарядку;
  • обеспечивает режим замены батарей без отключения питания;
  • проводит самотестирование (каждые две недели или по нажатию кнопки Power) и выдает предупреждение о необходимости замены батареи;
  • индицирует уровень подзарядки батареи, напряжения в сети, нагрузки ИБП (количество подключенного к ИБП оборудования), режим питания от батареи и необходимость ее замены.
  • В микросхеме памяти EEPROM IC13 хранятся заводские установки, а также калиброванные установки уровней сигналов частоты, выходного напряжения, границ перехода, напряжения зарядки батареи.

    Цифро-аналоговый преобразователь IC15 (DAC-08CN) формирует на выводе 2 эталонный синусоидальный сигнал, который используется как опорный для IC17 (АРС2010).

    ШИМ-сигнал формируется IC14 (АРС2020) совместно с IC17. Мощные полевые транзисторы Q9...Q14, Q19...Q24 образуют мостовой инвертор. Во время положительной полуволны ШИМ-сигнала открыты Q12...Q14 и Q22...Q24, a Q19...Q21 и Q9...Q11 закрыты. Во время отрицательной полуволны открыты Q19...Q21 и Q9...Q11, a Q12...Q14 и Q22...Q24 закрыты. Транзисторы Q27...Q30, Q32, Q33, Q35, Q36 образуют двухтактные драйверы, формирующие сигналы управления мощными полевыми транзисторами, имеющими большую входную емкость. Нагрузкой инвертора является обмотка трансформатора, она подключается проводами W5 (желтый) и W6 (черный). На вторичной обмотке трансформатора формируется синусоидальное напряжение 230 В, 50 Гц для питания подключенного оборудования.

    Работа инвертора в «обратном» режиме используется для зарядки батареи пульсирующим током во время нормальной работы ИБП.

    ИБП имеет встроенный слот SNMP, который позволяет подключать дополнительные платы для расширения возможностей ИБП:

  • адаптер Power Net SNMP, поддерживающий прямое соединение с сервером на случай аварийного закрытия системы;
  • расширитель интерфейса ИБП, обеспечивающий управление до трех серверов;
  • устройство дистанционного управления Call-UPS, обеспечивающее удаленный доступ через модем.
  • В ИБП имеется несколько напряжений, необходимых для нормальной работы устройства: 24 В, 12 В, 5 В и -8 В. Для их проверки можно воспользоваться табл. 2. Измерять сопротивление с выводов микросхем на общий провод следует при выключенном ИБП и разряженном конденсаторе С22. Типовые неисправности ИБП Smart-Ups 450VA...700VA и способы их устранения приведены в табл. 3.

    Таблица 3. Типовые неисправности ИБП Smart-Ups 450VA...700VA

    Краткое описание дефекта Возможная причина Способ отыскания и устранения неисправности
    ИБП не включается Не подключены батареи Подключить батареи
    Плохая или неисправная батарея, мала ее емкость Заменить батарею. Емкость заряженной батареи можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
    Пробиты мощные полевые транзисторы инвертора В этом случае на выводах батареи, подключенной к плате ИБП, нет напряжения. Проверить омметром и заменить транзисторы. Проверить резисторы в цепях их затворов. Заменить IC16
    Обрыв гибкого кабеля, соединяющего дисплей Эта неисправность может быть вызвана замыканием выводов гибкого кабеля на шасси ИБП. Заменить гибкий кабель, соединяющий дисплей с основной платой ИБП. Проверить исправность предохранителя F3 и транзистора Q5
    Продавлена кнопка включения Заменить кнопку SW2
    ИБП включается только от батареи Сгорел предохранитель F3 Заменить F3. Проверить исправность транзисторов Q5 и Q6
    ИБП не стартует. Светится индикатор замены батареи Если батарея исправна, то ИБП неверно отрабатывает программу Сделать калибровку напряжения батареи при помощи фирменной программы от АРС
    ИБП не включается в линию Оторван сетевой кабель или нарушен контакт Соединить сетевой кабель. Проверить омметром исправность пробки-автомата. Проверить соединение шнура «горячий-нейтраль»
    Холодная пайка элементов платы Проверить исправность и качество паек элементов L1, L2 и особенно Т1
    Неисправны варисторы Проверить или заменить варисторы MV1...MV4
    При включении ИБП происходит сброс нагрузки Неисправен датчик напряжения Т1 Заменить Т1. Проверить исправность элементов: D18...D20, С63 и С10
    Мигают индикаторы дисплея Уменьшилась емкость конденсатора С17 Заменить конденсатор С17
    Вероятна утечка конденсаторов Заменить С44 или С52
    Неисправны контакты реле или элементы платы Заменить реле. Заменить IC3 и D20. Диод D20 лучше заменить на 1N4937
    Перегрузка ИБП Мощность подключенного оборудования превышает номинальную Уменьшить нагрузку
    Неисправен трансформатор Т2 Заменить Т2
    Неисправен датчик тока СТ1 Заменить СТ1 . Сопротивление более 4 Ом указывает на неисправность датчика тока
    Неисправна IC15 Заменить IC15. Проверить напряжение -8 В и 5 В. Проверить и при необходимости заменить: IC12, IC8, IC17, IC14 и мощные полевые транзисторы инвертора. Проверить обмотки силового трансформатора
    Не заряжается батарея Неверно работает программа ИБП Откалибровать напряжение батареи фирменной программой от АРС. Проверить константы 4, 5, 6, 0. Константа 0 критична для каждой модели ИБП. Проверку константы делать после замены батареи
    Вышла из строя схема заряда батареи Заменить IC14. Проверить напряжение 8 В на выв. 9 IC14, если его нет, то заменить С88 или IC17
    Неисправна батарея Заменить батарею. Ее емкость можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
    Неисправен микропроцессор IC12 Заменить IC12
    При включении ИБП не стартует, слышен щелчок Неисправна схема сброса Проверить исправность и заменить неисправные элементы: IC11, IC15, Q51...Q53, R115, С77
    Дефект индикаторов Неисправна схема индикации Проверить и заменить неисправные Q57...Q60 на плате индикаторов
    ИБП не работает в режиме On-line Дефект элементов платы Заменить Q56. Проверить исправность элементов: Q55, Q54, IC12. Неисправна IC13, или ее придется перепрограммировать. Программу можно взять с исправного ИБП
    При переходе на работу от батареи ИБп выключается и включается самопроизвольно Пробит транзистор Q3 Заменить транзистор Q3

    Во второй части статьи будет рассмотрено устройство ИБП класса On-line,

    УСТРОЙСТВО ИБП КЛАССА OFF-LINE

    К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в табл. 3.

    Таблица 3. Основные технические данные ИБп класса Back-UPS

    Модель BK250I BK400I BK600I
    Номинальное входное напряжение, В 220...240
    Номинальная частота сети, Гц 50
    Энергия поглощаемых выбросов, Дж 320
    Пиковый ток выбросов, А 6500
    Пропущенные в нормальном режиме значения выбросов напряжения по тесту IEEE 587 Cat. A 6kVA, % <1
    Напряжение переключения, В 166...196
    Выходное напряжение при работе от аккумуляторов, В 225 ± 5%
    Выходная частота при работе от аккумуляторов, Гц 50 ± 3%
    Максимальная мощность, ВА (Вт) 250(170) 400(250) 600(400)
    Коэффициент мощности 0,5. ..1,0
    Пик-фактор <5
    Номинальное время переключения, мс 5
    Количество аккумуляторов х напряжение, В 2x6 1x12 2x6
    Емкость аккумуляторов, Ач 4 7 10
    Время 90-% подзарядки после разрядки до 50%, час 6 7 10
    Акустический шум на расстоянии 91 см от устройства, дБ <40
    Время работы ИБП на полную мощность, мин >5
    Максимальные габариты (В х Ш х Г), мм 168x119x361
    Вес, кг 5,4 9,5 11,3

    Индекс «I» (International) в названиях моделей ИБп означает, что модели рассчитаны на входное напряжение 230 В, В устройствах установлены герметичные свинцовые необслуживаемые аккумуляторы со сроком службы 3...5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБп переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.

    Структурная схема ИБП Back-UPS 250I, 400I и 600I показана на рис. 8. Сетевое напряжение поступает на входной многоступенчатый фильтр через прерыватель цепи. Прерыватель цепи выполнен в виде автоматического выключателя на задней панели ИБП. В случае значительной перегрузки он отключает устройство от сети, при этом контактный столбик выключателя выталкивается вверх. Чтобы включить ИБП после перегрузки, необходимо вернуть в исходное положение контактный столбик выключателя. Во входном фильтре-ограничителе электромагнитных и радиочастотных помех используются LC-звенья и металлооксидные варисторы. При работе в нормальном режиме контакты 3 и 5 реле RY1 замкнуты, и ИБП передает в нагрузку напряжение электросети, фильтруя высокочастотные помехи. Зарядный ток поступает непрерывно, пока в сети есть напряжение. Если входное напряжение падает ниже установленной величины или вообще исчезает, а также если оно сильно зашумлено, контакты 3 и 4 реле замыкаются, и ИБП переключается на работу от инвертора, который преобразует постоянное напряжение аккумуляторов в переменное. Время переключения составляет около 5 мс, что вполне приемлемо для современных импульсных блоков питания компьютеров. Форма сигнала на нагрузке - прямоугольные импульсы положительной и отрицательной полярности с частотой 50 Гц, длительностью 5 мс, амплитудой 300 В, эффективным напряжением 225 В. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до 208 В. В отличие от моделей Smart-UPS, в Back-UPS нет микропроцессора, для управления устройством используются компараторы и логические микросхемы.

    Принципиальная схема ИБП Back-UPS 250I, 400I и 600I практически полностью приведена на рис. 9...11. Многозвенный фильтр подавления помех электросети состоит из варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 9). Трансформатор Т1 (рис. 10) является датчиком входного напряжения. Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4...D8, IC1, R9...R11, С3 и VR1) и анализа сетевого напряжения.

    Если оно пропадает, то схема на элементах IC2...IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.

    Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.

    Во время работы от батареи микросхема IC7 формирует импульсы возбуждения инвертора PUSHPL1 и PUSHPL2. В одном плече инвертора установлены мощные полевые транзисторы Q4...Q6 и Q36, в другом -Q1...Q3 и Q37. Своими коллекторами транзисторы нагружены на выходной трансформатор. На вторичной обмотке выходного трансформатора формируется импульсное напряжение с эффективным значением 225 В и частотой 50 Гц, которое используется для питания подключенного к ИБП оборудования. Длительность импульсов регулируется переменным резистором VR3, а частота - резистором VR4 (рис. 10). Включение и выключение инвертора синхронизируется с напряжением сети схемой на элементах IC3 (выводы 3...6), IC6 (выводы 3...5, 6, 8, 9) и IC5 (выводы 1...3 и 11...13). Схема на элементах SW1 (выводы 1 и 8), IC5 (выводы 4...В и 8...10), IC2 (выводы 8...10), IC3 (выводы 1 и 2), IC10 (выводы 12 и 13), D30, D31, D18, Q9, BZ1 (рис. 11) включает звуковой сигнал, предупреждающий пользователя о проблемах с электропитанием. Во время работы от батареи ИБП каждые 5 с издает одиночный звуковой сигнал, указывающий на необходимость сохранения файлов пользователя, т.к. емкость аккумуляторов ограничена. При работе от батареи ИБП осуществляет контроль за ее емкостью и за определенное время до ее разряда подает непрерывный звуковой сигнал. Если выводы 4 и 5 переключателя SW1 разомкнуты, то это время составляет 2 минуты, если замкнуты - 5 минут. Для отключения звукового сигнала надо замкнуть выводы 1 и 8 переключателя SW1.

    Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. На рис. 11 этот порт обозначен как J14. Назначение его выводов: 1 - UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.
    2 - AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».
    3 - СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
    4, 9 - DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.
    5 - СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
    6 - ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.
    7, 8 - не подключены.

    Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.

    Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.

    КАЛИБРОВКА И РЕМОНТ ИБП

    Установка частоты выходного напряжения

    Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.

    Установка значения выходного напряжения

    Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.

    Установка порогового напряжения

    Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.

    Установка напряжения заряда

    Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.

    Типовые неисправности

    Типовые неисправности и методы их устранения приведены в табл. 4, а в табл. 5 - аналоги наиболее часто выходящих из строя компонентов.

    Таблица 4. Типовые неисправности ИБП Back-UPS 250I, 400I и 600I

    Проявление дефекта Возможная причина Метод отыскания и устранения дефекта
    Запах дыма, ИБП не работает Неисправен входной фильтр Проверить исправность компонентов MOV2, MOV5, L1, L2, С38, С40, а также проводники платы, соединяющие их
    ИБП не включается. Индикатор не светится Отключен автомат защиты на входе (прерыватель цепи) ИБП Уменьшить нагрузку ИБП, отключив часть аппаратуры, и затем включить автомат защиты, нажав контактный столбик автомата защиты
    Неисправны батареи аккумуляторов Заменить аккумуляторы
    Неправильно подключены аккумуляторы Проверить правильность подключения аккумуляторных батарей
    Неисправен инвертор Проверить исправность инвертора. Для этого отключить ИБП от сети переменного тока, отсоединить аккумуляторы и разрядить емкость С3 резистором 100 Ом, прозвонить омметром каналы «сток-исток» мощных полевых транзисторов Q1...Q6, Q37, Q36. Если сопротивление составляет несколько Ом или меньше, то транзисторы заменить. Проверить резисторы в затворах R1 ...R3, R6...R8, R147, R148. Проверить исправность транзисторов Q30, Q31 и диодов D36...D38 и D41. Проверить предохранители F1 и F2
    Заменить микросхему IC2
    При включении ИБП отключает нагрузку Неисправен трансформатор Т1 Проверить исправность обмоток трансформатора Т1. Проверить дорожки на плате, соединяющие обмотки Т1. Проверить предохранитель F3
    ИБП работает от аккумуляторов несмотря на то, что есть напряжение в сети Напряжение в электросети очень низкое или искажено Проверить входное напряжение с помощью индикатора или измерительного прибора. Если это допустимо для нагрузки, уменьшить чувствительность ИБП, т.е. изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства
    ИБП включается, но напряжение в нагрузку не поступает Неисправно реле RY1 Проверить исправность реле RY1 и транзистора Q10 (BUZ71). Проверить исправность IC4 и IC3 и напряжение питания на их выводах
    Проверить дорожки на плате, соединяющие контакты реле
    ИБП жужжит и/или отключает нагрузку, не обеспечивая ожидаемого времени резервного электропитания Неисправен инвертор или один из его элементов См. подпункт «Неисправен инвертор»
    ИБП не обеспечивает ожидаемого времени резервного электропитания Аккумуляторные батареи разряжены или потеряли емкость Зарядите аккумуляторные батареи. Они требуют перезарядки после продолжительных отключений сетевого питания. Кроме того, батареи быстро стареют при частом использовании или при эксплуатации в условиях высокой температуры. Если приближается конец срока службы батарей, то целесообразно их заменить, даже если еще не подается тревожный звуковой сигнал замены аккумуляторных батарей. Емкость заряженной батареи проверить автомобильной лампой дальнего света 12 В, 150 Вт
    ИБП перегружен Уменьшить количество потребителей на выходе ИБП
    После замены аккумуляторов ИБП не включается Неправильное подключение аккумуляторных батарей при их замене Проверьте правильность подключения аккумуляторных батарей
    При включении ИБП издает громкий тональный сигнал, иногда с понижающимся тоном Неисправны или сильно разряжены аккумуляторные батареи Зарядить аккумуляторные батареи в течение не менее четырех часов. Если после перезарядки проблема не исчезнет, следует заменить аккумуляторные батареи
    Аккумуляторные батареи не заряжаются Неисправен диод D8 Проверить исправность D8. Его обратный ток не должен превышать 10 мкА
    Напряжение заряда ниже необходимого уровня Откалибровать напряжение заряда аккумулятора

    Таблица 5. Аналоги для замены неисправных компонентов

    Схемное обозначение Неисправный компонент Возможная замена
    IC1 LM317T LM117H, LM117K
    IC2 CD4001 К561ЛЕ5
    IC3, IC10 74С14 Составляется из двух микросхем К561ТЛ1, выводы которых соединить согласно цоколевке на микросхему
    IC4 LM339 К1401СА1
    IC5 CD4011 К561ЛА7
    IC6 CD4066 К561КТ3
    D4...D8, D47, D25...D28 1N4005 1N4006, 1N4007, BY126, BY127, BY133, BY134, 1N5618... 1N5622, 1N4937
    Q10 BUZ71 BUZ10, 2SK673, 2SK971, BUK442...BUK450, BUK543...BUK550
    Q22 IRF743 IRF742, MTP10N35, MTP10N40, 2SK554, 2SK555
    Q8, Q21, Q35, Q31, Q12, Q9, Q27, Q28, Q32, Q33 PN2222 2N2222, BS540, BS541, BSW61...BSW 64, 2N4014
    Q11, Q29, Q25, Q26, Q24 PN2907 2N2907, 2N4026...2N4029
    Q1...Q6, Q36, Q37 IRFZ42 BUZ11, BUZ12, PRFZ42

    Геннадий Яблонин
    "Ремонт электронной техники"

    Основное назначение источника бесперебойного питания (ИБП) - временно обеспечить питание аппаратуры при перебоях в подаче электроэнергии. Подключать через ИБП компьютеры принято повсеместно. Правда, для многих пользователей это является своего рода «правилом хорошего тона», а практический смысл данного ритуала от них ускользает. «Ну, ИБП защищает компьютер от скачков напряжения…». Попробуем разобраться: что, от чего и как защищает источник бесперебойного питания?

    По внутреннему устройству и логике работы все ИБП делятся на три класса: пассивные, линейно-интерактивные и ИБП с двойным преобразованием. Соответственно, они в разной мере справляются с происшествиями в электросети и относятся к разным ценовым категориям.

    Пассивные (stand-by, VFD, back-UPS, резервные) источники - самые простые и дешевые. В них схема питания от аккумулятора обычно выключена, и запускается только при пропадании напряжения в электросети. Время переключения с работы от сети на работу от батареи составляет десятые доли секунды, а выходной сигнал при работе от аккумулятора заметно отличается от «правильной» синусоиды. Как правило, на входе таких ИБП установлены простейший фильтр помех и быстродействующий предохранитель. Первый частично сглаживает импульсные помехи, а второй должен сработать при значительном повышении напряжения в электросети. Пассивные ИБП предназначены для питания домашних и офисных ПК. Небольшой «провал» выходного напряжения в момент переключения на аккумулятор компьютерным блокам питания не страшен.

    Линейно-интерактивные (line-interactive, VI, Smart-UPS) ИБП отличаются тем, что в них схема питания от аккумулятора включена постоянно. При исчезновении напряжения на входе «бесперебойника» его выходные розетки почти моментально переключаются на внутренний преобразователь - для питаемых устройств этот переход практически незаметен. Кроме того, многие линейно-интерактивные ИБП способны автоматически поддерживать выходное напряжение 220 В. Делается это двумя способами.

    Пока напряжение сети находится в пределах от 175 до 275 В, срабатывает механизм AVR (Automatic Voltage Regulation, авторегулятор напряжения). При отклонении входного напряжения на величину от 10 до 25% ниже номинала ИБП повышает напряжение на выходе на 15%. При отклонении входного напряжения на величину от 10 до 25% выше номинала ИБП понижает напряжение на 15%. Если напряжение сети выходит за предельные значения, линейно-интерактивный ИБП переключается на питание от аккумулятора. В этом режиме он продолжает работать, пока или напряжение в сети не вернется к норме, или аккумулятор не разрядится. Однако такие ИБП не стоит рассматривать как стабилизаторы напряжения. Режим «стабилизации» у них вынужденный и кратковременный!

    В ИБП с двойным преобразованием (double conversion, VFI, Online-UPS) напряжение на выход все время выдается от преобразователя, преобразователь постоянно работает от аккумулятора, а аккумулятор непрерывно заряжается от сети. Фактически вход и выход ИБП гальванически изолированы друг от друга, а на выход поступает стабилизированное напряжение. Это самая надежная, но вместе с тем и неэкономичная схема. Сам ИБП получается дорогим, большим и тяжелым, преобразователь сильно нагревается и требует охлаждения вентилятором, а потери энергии в ходе преобразования составляют десятки процентов.

    ИБП с двойным преобразованием используют только для питания серверов и компьютеров в критически важных случаях. В широкую продажу такие модели поступают редко - обычно их поставляют под заказ. Скорее всего, для питания рабочих компьютеров вы приобретете пассивные, максимум, линейно-интерактивные ИБП.

    Мощность источников бесперебойного питания принято указывать в вольт-амперах (VA, ВА). Чтобы перевести эти значения в более привычные ватты (Вт), нужно умножить мощность в вольт-амперах на коэффициент 0,6. Например, ИБП с характеристикой мощности 600 ВА обеспечит питанием технику с максимальным потреблением 360 Вт. Если дать большую нагрузку, сработает защита по току, и «бесперебойник» отключится. На практике желательно предусмотреть около 30% запаса по мощности. Таким образом, наиболее распространенные ИБП на 600 или 650 ВА подходят для питания компьютера с реальным потреблением 200-250 Вт и монитора, который забирает еще около 30-60 Вт.

    Если расстановка компьютеров в помещении позволяет, выгоднее использовать один мощный ИБП вместо нескольких маленьких. На два офисных компьютера потребуется «бесперебойник» мощностью около 1000 ВА. Для питания трех компьютеров, стоящих рядом, достаточно одного источника мощностью около 1400 ВА.

    Так от чего же защищает ИБП?

    С ограничением импульсных помех от сети неплохо справляются и фильтры в блоке питания компьютера и монитора. Тем не менее два фильтра лучше, чем один! Защита от перенапряжения тоже важна. Если, например, отгорит нулевой провод в щитке, в розетке может оказаться напряжение почти 380 В. В блоках питания компьютеров и мониторов в таком случае обычно сгорают варисторы и предохранители. Ремонт копеечный, но требует времени. По идее, ИБП должен отреагировать на бросок напряжения раньше, чем сгорят предохранители в подключенной к нему технике.

    Однако на первое место выходит защита данных. Если питание компьютера аварийно отключается, вся несохраненная информация пропадает. ИБП позволяет либо сохранить открытые документы и корректно завершить работу, либо перевести компьютер в спящий режим. Вручную сохранить документы проще всего. Переходя на питание от батарей, ИБП начинает громко пищать. Раз услышали такое предупреждение - проверьте, все ли сохранено. Далее смотрите по обстановке: или просто выключите компьютер, или переведите его в спящий режим.

    Чтобы задействовать автоматику, необходимо соединить контрольный порт (USB или RS-232, в зависимости от модели) источника бесперебойного питания с компьютером сигнальным кабелем и установить на компьютере необходимое ПО. К сожалению, о такой возможности многие пользователи даже не подозревают! Работой ИБП управляет встроенный микроконтроллер. Его микропрограмма (прошивка) постоянно отслеживает напряжения и токи во внешних цепях, при включении и периодически во время работы выполняет тестирование электроники и батареи. Она же выдает в контрольный порт сведения о текущем режиме работы, состоянии компонентов ИБП. По кабелю эти данные поступают в компьютер, где их обрабатывает программа мониторинга.

    Для работы с ИБП целесообразно использовать ту программу, которую предлагает его производитель. Например, для APC (www.apc.com) это программа Power-Chute, для Ippon (www.ippon.ru) - WinPower2009 и Ippon Monitor и т. д. Программу можно установить с диска, идущего в комплекте, но лучше скачать наиболее свежую ее версию с сайта производителя.

    В настройках приложения нужно задать параметры автоматического выключения. Как правило, на выбор предлагается два варианта: или выключить компьютер через определенное время после перехода на резервное питание, или сделать это за какое-то время до предполагаемого полного разряда батарей.

    Сколько времени «бесперебойник» способен проработать от аккумулятора?

    Это зависит от емкости батареи и потребляемой мощности. В большинстве массовых моделей установлен один аккумулятор напряжением 12 В и емкостью 7 Ач. Теоретически ИБП с таким аккумулятором обладает запасом энергии около 80 Ватт-часов. Попросту говоря, он должен питать нагрузку мощностью 80 Вт примерно 1 час, 160 Вт - полчаса, 300 Вт - примерно 15 мин и т. д. Реально, с учетом потерь на преобразование, это время примерно вдвое меньше.

    В источниках мощностью более 800 ВА обычно установлены два таких же аккумулятора или один, но большей емкости. Таблицы или калькуляторы для определения времени автономной работы при различной нагрузке для различных моделей приводятся на сайтах производителей. Однако «навскидку» можно принять, что любая модель сможет питать нагрузку номинальной для себя мощности в течение примерно 5-15 мин. Если нужно обеспечить достаточно долгое питание компьютера от аккумуляторов, лучше взять ИБП большой мощности с емкими батареями. Работать он будет всего на треть или четверть номинальной мощности. Зато такую нагрузку, низкую для себя, он сможет снабжать энергией полчаса и дольше.

    Сетевому оборудованию (коммутаторам, маршрутизаторам, NAS) бесперебойное питание тоже полезно. В противном случае при отключении энергии сеть сразу же «упадет», а документы, открытые из сетевых папок, сохранить не удастся. Запитать коммутатор вы можете от ИБП ближайшего к нему рабочего места, хотя правильнее поставить для этого отдельный «бесперебойник» небольшой мощности.

    Срок службы аккумулятора ограничен. По мере работы его емкость неуклонно снижается и через 3-5 лет эксплуатации падает почти до нуля. Еще до того, как индикатор на ИБП сигнализирует о необходимости замены батареи, становится заметно, что аккумулятор перестает «держать заряд». С каждым разом время автономной работы сокращается. В принципе, для сохранения документов и корректного выключения компьютера достаточно пары минут. Когда ИБП начинает отключаться еще раньше, батарею однозначно пора менять.

    Заменить батарею несложно. В популярных ИБП марки APC и некоторых других аккумулятор находится под съемным лючком или крышкой. Чтобы добраться до аккумулятора в ИБП марки Ippon, SVEN и подобных им по конструкции, необходимо вывернуть четыре винта на днище и разъединить половинки корпуса. В инструкции и на официальном сайте вы вряд ли встретите описание самостоятельной разборки и замены: как и производители принтеров, изготовители ИБП значительную долю доходов получают от продажи «оригинальных» батарей с установкой их в авторизованных СЦ.

    Тем не менее почти во всех компьютерных магазинах продаются герметичные свинцово-кислотные аккумуляторы наиболее ходовых типоразмеров. Марка и производитель роли не играют: это вполне стандартные изделия. Предварительно откройте свой «бесперебойник» и выясните, какая батарея в нем установлена. Для большинства ИБП «офисного класса» (500-700 ВА) подходят батареи с маркировкой 12V 7Ah размерами 151×94×65 мм. Устанавливая новый аккумулятор, постарайтесь плотно одеть клеммы на контактные лепестки батареи. Если клеммы ослабли, их можно аккуратно поджать плоскогубцами.

    После установки батареи ИБП желательно откалибровать, чтобы его микропрограмма оценила и запомнила параметры нового аккумулятора. Полностью зарядите батарею в течение суток. После этого извлеките вилку из розетки, чтобы ИБП перешел на автономное питание. Дайте батарее полностью разрядиться, пока «бесперебойник» не отключится сам. В качестве нагрузки лучше использовать не компьютер (хотя в крайнем случае и это допустимо), а несколько лампочек общей мощностью порядка 300 Вт. Затем вновь подключите к сети и включите ИБП - пусть батарея зарядится, а устройство продолжит работу в штатном режиме. Кроме калибровки устройства в целом такая процедура является и «тренировкой» аккумулятора. После полного цикла «разряда - заряда» батарея начинает максимально использовать свою емкость.

    Зачем на многих ИБП сделаны телефонные (RJ-11) и сетевые (RJ-45) розетки?

    Ни телефон, ни локальная сеть «бесперебойникам» не нужны по определению. Просто в качестве «бонуса» в одном корпусе с устройством установлены проходные фильтры импульсных помех для телефонной линии и сети. Соедините одно гнездо с телефонной розеткой на стене, а в другое включите телефонный аппарат. Если в телефонной линии возникнет высоковольтная наводка, например, во время грозы, фильтр сгладит бросок напряжения и защитит телефон.

    Похожие публикации